

A novel zirconium K imager for high energy density physics research

K. U. Akli,¹ M. Sanchez del Rio,² S. Jiang,¹ M. S7382730(1)TjF61Tf8.064008.0649.332675.1111Tm-0.0001Tc[The)-24

FIG. 1. (Color online) Diffraction curve from SHADOW ray tracing. The bottom curve corresponds to Zr K $_2$ reflectivity from quartz 2354 in second diffraction order. The top curve corresponds to Cu K $_1$ reflectivity from quartz 2131 in second diffraction order.

FWHM of the diffraction curve is 1.4 mrad; similar to that of the Cu imager. These calculations suggest that the Zr imager is a useful diagnostic for high energy density physics (HEDP) with only four times reduction in the collected signal. However, as we will show in Sec. III B, the Zr imager

performance is better than the Cu imageriplasma]TJ0-1.2006TD-0.0002Tc[(stemerfatur)-49107(e)-.3(s)24.8(fr-0.4(mcte)-49097(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(s)24.8(fr-0.4(mcte)-4907(e)0.3(fr-0.4(mcte)-4907(e)0.3(fr-0.4(mcte)-4907(e)0.3(fr-0.4(mcte)-4907(e)0.3(f

FIG. 3. (Color online) Collection efficiency of spherical Bragg crystals as a

FIG. 4. (Color online) K maps induced by photo-pumping for three 200 μm thick targets. Top: copper; middle: zirconium; bottom: gold.

where $_0$ is a normalization constant, $_r$ is the local dispersion angle.²⁴

123503-6 Akli *et al.*