Z-pinch instability with distributed current
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Sausage and kink growth rates for a Z pinch are computed from ideal magnetohydrodynamic
theory for an infinitely thin surface current sheath and for a surface current layer of finite width.
The growth rate decreases with increasing layer width. Satisfactory agreement with experiment is
obtained for reasonable width estimates based on magnetic field diffusion.

PACS numbers: 52.55.Ez, 52.30. + r, 52.35.Py

I. INTRODUCTION

In Z-pinch experiments at Maxwell Laboratories,’
growth rates of various instability modes have been mea-
sured by observing the variations in optical emission along
the pinch axis. For each time, the structure of the optical
emission was Fourier decomposed and estimates of the insta-
bility growth rates were characterized by wave number k
and aximuthal mode number m. Typical growth times' are
shown in Table 1. These growth times were observed for
several instability wavelengths; for example, 13 ns was ob-
served for 0.3 and 1.9 cm.

To analyze the instabilities, a model of the pinch was
developed in which it was assumed that the implosion and
confinement was due to currents on the surface of the plasma
column.? This assumption appeared valid because of the
short times of the plasma dynamics. The predicted growth
rates, however, differed from the experimental results by a
factor of three.

A simple explanation for this discrepancy could be that
the plasma current is carried in a surface layer of finite
width. The stability for a pinch with finite width current
layer would be intermediate between a sharp boundary
pinch (surface current) and a pinch with homogeneous cur-
rent density, which is marginally stable. In what follows, we
will investigate the sensitivity of growth rates to current dis-
tribution and use the observed growth rates to estimate the
current penetration in the experiments cited above. The re-
sults show that the current penetrates through more than
half the pinch radius on the time scales of interest.

This estimate compares favorably with the current pen-
etration anticipated from resistive diffusion. The character-
istic diffusion time for magnetic field or current is

Tp = 4mrio/ (1a)
where 7, is the pinch radius and o is the conductivity:
o=2.5x10"7 T>25~!, {1b)

and the temperature T is in kilo-electron-volts.

For the Z-pinch experiment, 7= 0.1 keV and r, =1
mm, hence, 7, = 1 us. The time to diffuse a fraction f of the
pinch radius is 7, /*. Assuming that the available time for
magnetic diffusion is equal to the implosion time (80 ns) sug-
gests that the current penetration is about 30%. An alternate
estimate assumes that during the collapse, the plasma tem-
perature is probably 20-50 eV, leading to full penetration of
the initial, lower, current. In any case, it seems that a finite
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width current sheath may be present, which would cause the
observed growth rates.

Instability growth rates are influenced by more than
just the current profile, e.g., initial density and temperature
in the pinch, the equation of state, and energy transport.
However, these effects seem to be minor for our Z pinches
and we will ignore them for now.

Il. Z-PINCH MODEL

We consider a model of the pinch that is infinite in the z
direction. The plasma, 0<r<r, is assumed to be perfectly
conducting and is described by the magnetohydrodynamic
(MHD) equations.? For r,<r< oo we assume that the density
vanishes and it makes no difference if the medium is insulat-
ing or perfectly conducting. The plasma is treated as incom-
pressible, but some examples of the effect of compressibility
will be shown.

The equilibrium MHD equations are

vp— — L vB 1 L BVB (2a)
8 47
In the present case, B = [0,8,(r),0], so that
B 2
o _ 1 0p Zv (2b)
ar 87 oOr 4r

The linearized perturbation equations are for an incompress-
ible plasma:

5p + 8&V p=0=V-dE, (3)
B,6B
— pa*dE = ~V[5P+ 2 9]
T
1 B, 5B
—(8BV)B + =~ Z—, 4
+47( B + 30 (4)

TABLE I. Growth times for two representative Z-pinch implosions as mea-
sured, compared to the growth times as predicted from the surface current
model, Eq. (2).

Growth times

Measured Predicted
Array m=0 m=1 m=0 m==1
Low mass, [ =3 MA
(BLACKJACK 5) o 14 ns 5.7 ns
High mass, / = 0.8 MA
{(BLACKJACK 3) 13ns 3.7ns
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B = VX (8¢ X B). (5)

Assumethat § § = g (k,m,7) exp i(kz + m6 — wt }and a simi-
lar form for all perturbations. Then Egs. (3), (4), and (5) can
be reduced to one equation for £, which is

2 Fn2re, +Grk, =0, (©
ar  Or
where
_ [4mpo® —m?B /7] r 6
F(n= T (6a)
m’B? X a(B,,) 2m*B?
Gl == 4me = 2B\~ ) = Zkor 1 o
4 i[l"”’_f’_]
arl Ak + m?
212 2 2
Am?k 2 (B3/r) (6b)

+ .
(k%P + m*)dmpw® — m*B%/r?)

The same equations are obtained from the standard equa-

tions for a screw pinch [Ref. 3, Eqs. {6.3.2)-(6.3.7}] by omit-

ting compressibility and the axial magnetic field.
The boundary condition on the radial displacement

8¢, is
56, = [ar, N form =0,
ar'—',  for m+0.
Thepinch center 6&, (r = 0)expi(kz + m6 — wt ) remains un-
changed, except for the kink mode m = 1. The perturbed
pressure 5p* = 8P + B,6B,/4m is

_ [4mpo® —m?B /] 9
4k’ + m?) or

for m = 0. By substitution,

Sp*(r = 0) = 2apw*/k 2, (7b)

and similarly for m 0. Only for the sausage mode, m = 0,
do these boundary conditions differ from Ref. 3.

At the outer pinch radius 7,, the boundary condition
follows from pressure equilibrium with the vacuum region
outside the pinch, taken to be of infinite extent. Then

Sp*ro—0)  m?B* K, l(kry)

05 (ro—0) 4wl krK ,(kro)
where K, is a modified Bessel function, and the argument
(ro — 0) means that the functions should be evaluated just
inside the boundary. The same boundary condition is ob-
tained if the region outside the pinch is a perfect conductor
but has zero density.

An incompressible mode for the plasma gives consider-
ably algebraic simplification and is justified because com-
pressibility has little influence on the growth rate for the
sharp boundary pinch with constant density. In this case, the
growth rate

V=0 =(Cy/r) (10)

is determined by
I? L.([x*+a’r*)'"?) 2 K, (x)
[+ T I ([ + a2 x KLx)

(7a)

2m*B5(6¢,./1)
r¢, +-—47(k2r2 ) (8)

op*

&)

+1,
(11)
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FIG. 1. (a) The growth rate I" vs wave number x = kr,, for the sausage mode
(m=0) in the sharp-boundary pinch, with different compressibilities
a® =0, 1, and 2. The insert is the region 0<k7,<1 on an expanded scale to
show the asymptotic behavior near kr, = 0. (b) The growth rate I" vs wave
number x = kr, for the kink mode (m = 1) and for m =2 in the sharp-
boundary pinch, with different compressibilities a? = 0, 1, and 2.
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where C, is the Alfven speed corresponding to the edge mag-
netic field By;

i =B3/4mp, (12)
x = kro, I, is a modified Bessel function, and the compress-

ibility enters through the ratio of Alfven speed and sound
speed C,,

a=C,/C,. (13)

The sound speed is proportional to the index in the adiabatic
gas law Pp ~ ¥ = constant,

i=P/p. (14)

For an ideal adiabatic gas, y = 1 + 2/n, where n is the num-
ber of degrees of freedom so that 1<y <3. In equilibrium, for
which the pressure P = B2 /87,

a=2/y. (15)

The incompressible case corresponds to y— o0, ora = 0, the
other limit is the isothermal gas, for which y = 1.

For the sausage mode, m = 0, Fig. 1(a) shows the
growth rate I" vs kr, in (1) the incompressible limit a = 0, (2)
when ¢ = 1, and (3) the isothermal case a = 2. The growth
rate is insensitive to the value of a, except near kr, =0,
where the growth rate is

FIG. 2. The growth rate for the sausage mode (m = 0) in a constant density
pinch with constant current density in a layer between 4 and 1. The star

indicates the experimental value for 4 = 0.3 cm.
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I'=2—a¥™"%r, (16)

Figure 1(b) displays the growth rate for the kink mode
m = 1, and for the next higher mode m = 2. Compressibility
makes very little difference over the whole range of wave
numbers. Therefore, the incompressible model is used in the
following analysis. The theoretical values for the growth
time in Table I were calculated from Eq. (11) for ¢ =0,

ro_ krol, (krg) [1 + m’K,,, (kro) :
I (kro) kroK ,,(kro)

note that this expression should not be used at small k7,
because for m = Q it gives an erroneous finite limit "% = 2
for kr,—0.

Numerical solution of Eq. (6) is necessary to find the
growth rate of a Z pinch with finite width current layers. The
assumed current distribution is homogeneous in the outer
regions of the pinch between » = Ar, and the edge 7,. The
equilibrium pressure in the pinch is no longer constant, but
varies with radius according to Eq. (2). The density can be
taken constant provided the temperature is consistent. An
alternative is to determine the density through either adiaba-
tic compression p~p" with ¥ = 5/3, isothermal compres-
sion where ¥ = 1, or better yet, a model where temperature
profile is prescribed separately from energy balance consid-
erations that include joule heating. There are no data that

(17)

A =099

A =0.90

A=075

A = 0.50
A=0.25
A =0.01

kr0

FIG. 3. The growth rate for the kink mode (m = 1} in a constant density
pinch with constant current density in a layer between 4 and 1. The growth
rate remains finite for equality distributed current (4—0).
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force a particular choice. However, as shown by the growth
rates in Figs. 2 and 4, the choice is not particularly important
as the density profile makes little difference.

Figure 2 shows the growth rate I" for the sausage mode
(m = 0) with a constant density profile and given total cur-
rent, distributed as a constant current density in a layer from
s=A to the edge s = 1. At small wavelength kr;«<1 the
growth rate is proportional to kr,, but for k7> 1 the growth
rate saturates. This is particularly pronounced for 4—0, i.e.,
when the current is evenly distributed. However, where
A—0, the growth rate is relatively small. It is clear that cur-
rent profile has an appreciable effect on the growth rate; the
factor three reduction that is needed for agreement between
theory and experiment is obtained for 4 =0.25 (around
kro~4).

Growth rates for the kink mode (m = 1) are comparable
to sausage instability growth rates. Figure 3 shows the kink
growth rates for the current layer model with different layer
widths. The growth rates are again proportional to k7, and
saturate for kr;— oo. For increasingly wide current layers,
the growth rates do not decrease to zero but approach a finite
value which is roughly a factor three below the growth rate

A=0.99

kr

[

FIG. 4. The growth rates of the sausage mode (m = 0) with equilibrium
density from adiabatic compression for current density layers of variable
width.
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for sharp-boundary pinch. It is, of course, well known that
for a Z pinch the kink mode is unstable irrespective of the
current distribution, while the sausage mode is stable for the
current concentrated near the center.

Figure 4 shows the sausage mode growth rate /" assum-
ing adiabatic compression with ¥ = 5/3 to determine the
equilibrium density. The general behavior of growth rate
with wave number is the same as with constant density, but
numerically the growth rate is slightly higher when the den-
sity is allowed to vary. Note that the relation between the
normalized growth rate I" and the physical value, Eq. (10), is
now with the Alfven speed C} = B3 /4mp corresponding to
the edge magnetic field and the average density, p, with

G =2 f ordr. (18)
0

The current layer width that gives agreement with ex-
perimental growth rates is of the same order but slightly
larger than A = 0.25 found for a constant density pinch. Ap-
parently these density and temperature profiles have a minor
and negligible influence on the growth rates.

{ll. CONCLUSION

We have investigated sausage and kink growth rates for
a Z pinch in which the current is carried in a sheath of finite
width. As the sheath thickens, the growth rate decreases.
The experimental growth rate is reproduced when the cur-
rent is homogeneously distributed over the outer 75% of the
pinch. Estimates on magnetic field diffusion give similar lay-
er widths.

Other refinements in the MHD model will undoubtedly
influence the optimum current width further, but for the
moment it suffices that we find a sizable reduction of theo-
retical growth rates with increasing current layer width.
Since the estimated widths are compatible with magnetic
diffusion the model gives a consistent interpretation of the
experimental data.
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