Mass loss of exploding foiis
N. H. Pereira

Berkeley Research Associates, P.O. Box 852, Springfield, Virginia 22150

R.E. Tery
Naval Research Laboratory, Washington, DC 20375

{Received 12 April 1988; accepted for publication 13 April 1988)

A thin asymmetrically driven exploding foil loses mass when the acceleration of the buik of the
foils exceeds the acceleration of the foil’s back. A simplified but exactly solvable model clarifies

the mass erosion process.

Opening a current-carrying circuit by guickly separat-
ing metallic conductors works well in low-power applica-
tions. In high-power circuits the magnetic pressure may be
sufficient to move thin conductors Guring the current pulse,
and in this case a moving foil could be used to break a circuit.

Experimentai evaluation? of a maoving foil as a circuit
breaker was moderately successful when the circuit has a
fow inductance, interrupting about half the input current.
The low efficiency was not unexpected, bowever, it was sur-
prising that the interruption occurred earlier than calculated
from Newton’s law using the magnetic pressure and the foil
mass per unit area. An earlier paper” identified and evaluat-
ed one mechanism for early breaking of the circuit, viz., mass
loss from the bulk of the foil due to differential acceleration.

Typically the resistance in a metallic foil increases with
temperature, and the current density decreases where the
foil becomes hot. In the situation suggested by Fig. 1 the
back of the foil, at x = 0, is toward the side of the input
current; the foil front, at x = — d, connects to an output
circuit. Then the magnetic force density in the foil can be-
come largest somewhere inside rather than on the back. In
the absence of material strength the foil rips apart. The back
of the foil stays behind, while the front part splits off, acceler-
ating faster than if the foil were intact.

Assuming constant density p and ignoring material
strength the foil splits at a point x, where the local accelera-
tion becomes fess than the acceleration of the foil in front of
this point. In the front part of the foil the local acceleration
increases from x = — d going into the foil, and the foil
moves as a solid. 1ts acceleration is the difference in magnetic
pressure A(u,H ?/2) between the foil edge at x = — 4 and
x,, divided by the mass per unit area { ,dx p of this part of
the foil. The local acceleration is given by the gradient in the
magnetic pressure, — V (i, # ?/2}, divided by the focal mass
density p. Thus, the foil splits when
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This equation determines the splitting position x_; mass loss
starts when x, reaches the foil’s back, i.e., when x, = 0.

An extreme example is a foil that suddenly changes
from a cenductor into an insulator, e.g., when the magnetic
field exceeds a certain value. The rear of the foil starts insu-
lating first. No current flows in the insulating part of the foil,
the force density vanishes, and the insulating material coasts
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along. In contrast, the front part of our idealized foil still
accelerates, and it will put away from the insulating fraction.

¥t should be emphasized that the bebavior of thin foils in
such situations is influenced by many other effects (e.g., ki-
netic pressure from hot plasma, nonuniform electrical
breakdown, etc.) that may be more important than the mass
erosion phenomenon discussed. Nevertheless, mass erosion
is certainly a contributor to earlier opening of the foil open-
ing switch.

To gain analytical insight into the splitting process, this
communication uses the magnetic fields from a special solu-
tion to the magnetic diffusion equations. The relevant com-
porent of the magnetic field # (or the current density j)
penetrates into our one-dimensional foil according to

oE aH
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where E is the relevant component of the electric field. The
current heats the foil; without thermal diffusion the energy
per unit mass ¢ increases according to

o0 .

a
The current density is given by the electric field and the
resistivity %, but as the material heats up the resistivity in-
creases, and

E=x(0)]. (2d)

Often the resistivity is proportional to the heat content
starting at the melting point where @ = Q,, , the resistivity
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FIG. 1. Foil geometry. The input current comes from the left at the foil’s
backside at x = 0, and the output current is on the right at the foil’s front
sideat x = —d.
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increases more rapidly. At the boiling point and beyond the
resistivity is difficult to characterize.

Asafunction of normalized heat contentg = ¢/, the
resistivity is

(g} = 1o/ (q), (3)

where the function f (¢) depends on the material. The sim-
plest model® is a linear resistance increase, f= 1 + fg, with
£ the resistivity increase until melting. For room-tempera-
ture aluminum 3~ 3.8, and for copper 5~5.5. Beyond the
melting point the resistance may still increase linearly, but
with a larger value for the slope 53,,,, e.g., 5,, ~9 for alumi-
num.

The next step is to define the boundary conditions on the
magnetic field. On the backside the magnetic ficld is given by
the input current f(¢) per unit length /, H(¢) = I(2)/1. The
magnetic field at the foil front and the output current are
similarly related.

When the input and outpui currents are given, or when
these are determiined by an electirical circuit,” the partial dif-
ferential equations (2} must be solved numerically. The al-
ternative taken is to consider a case for which the partial
differential equations simphfy to ordinary differential equa-
tions. One choice is to use self-similar variables, but the ap-
propriate choice is a magnetic wave with constant speed
driven into the foil by a specific boundary condition. The
sole argument in all field variables is now x 4 vr. These spe-
cial solutions are well known’: the wave solution was used
recently for a melting problem.®

The progressive wave solution works nicely for an infi-
nite half-space, where a suitable input current specifies the
boundary condition for the magnetic field at the back edge.
In this case the other boundary condition is that all ficlds
vanish for x— — «.Then Eg. (2a) gives £ = y,vH, and Eq.
(2¢) combined with Eq. (2b) integrates to Q = 5 /2.

The heat equation (2¢) becomes

dg/ 3 = g/f (g), {4a)

where ¢ = (x + vt)/8, and the skin depth § = 7,/ 2uw. In-
tegrating gives

ngiﬁfl‘f’;’i, (4b)
i X

Here the value § = 01s chosen to be at the melting point, i.e.,
atg= L

Obviocusly, the shape of the magnetic wave depends on
the resistivity {3). Figure 2 shows the heat content g, the
(normalized) magnetic field #(¢) ~¢'/?, and the normai-
ized magnetic pressure — dg/d{ for the progressive wave in
aluminum, using /= 1 + Sg with g = 3.8 below melting at
g = 1,and abreak inslopeto 8, = 9 for g» 1. Where the foil
is still cold, g« 1, the resistivity is constant and as a conse-
quence the diffusion is exponential. For ¢~ 1 and larger the
heat is linear in £, whence the magnetic fieid follows £ '/%
The wave travels from right to left into the foil; the cross-
hatched block suggests the wave’s location in the foil at a
particular time (before melting).

The magnetic field at the foil back H,(¢) is given by the
intersection of the wave with the foil boundary at x = 0 (the
* in Fig. 2). This in turn defines how the input current
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FIG. 2. The magnetic diffusion wave for an infinite slab of aluminum at
roont temperature or for a finite foil with judiciously chosen output current.
Shown is the normalized heat content g(£), the normalized magnetic field
h{5); the gradient of the magnetic pressure or the magnetic force density
- dk?/7d¢ shows the effects of the more rapidly increasing resistivity at
melting.

Hy(1)! should behave in time to be appropriate for the pro-
gressive wave. Likewise, the ouiput current at the front of
the foil must be specified in accordance with the progressive
wave (the Oin Fig. 2). This way the magnetic diffusion wave
never notices that the foil has a finite thickness. It may be
impossible to get the correct currents in practice, but this
detail is irrelevant for our discussion.

The change in time of the heat content g,{7) at the foil
back, where x = Qand § = vt /6 = 7, follows from inversion
of

alr) g
;e f flgydg (5)
1 g

The heat at the back also determines the current per umit
length, I /1 = (290, /1i,) "%, or I « g'/%. The penetration ve-
locity v is determined by a characteristic risetime ¢; at the
appropriate point in the input current pulse, viz., v = {7,/
pITIY RS

Using the progressive wave solution the foil splitiing
becomes particularly easy because the heat content Q is
equal to the magnetic pressure uy i */2. According to Eq.
{ 1) the foils splits when x, = 0, or in normalized form when

49 (9D —gtr—d/5)

; (6a)
d¢ a/é
in terms of the resistivity function f (g} this becomes
n d 5 g}
Flatni= / (60)

1~ g(r—d/8)/q(r)’
after inserting Eqgs. (4).

Figure 3 shows the function f (g) for room-temperature
aluminum; the straight lines meet at the melting point at
g = 1. The curved lines are the right side of Eq. {6b) for four
values of the foil thickness d normalized to skin depth §, viz.,
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FIG. 3. The resistivity 5(g¢) for aluminum, and the right-hand side of Eq.
{6b) for different foil thicknesses d /8 = 0.5, 1.0, 1.5, and 2.0. The intersec-
tion of the curves defines where the foil splits.

d/6=10.5, 1.0, 1.5, and 2.0. Splitting occurs where the
curves cross. For all foil thicknesses the splitting starts in-
creasingly beyond the melting point as the foil becomes
thicker. Nevertheless, the melting point is 2 good approxi-
mation for all foils in this case, undoubtedly because the
resistance increases so suddenly.

Exquation (6) is hard to solve analytically because it in-
volves the function g(£) at the two foil sdges, ie., at two
different positions. However, when the foil is thin a Taylor
expansion of g(7 — d /) tosecond orderind /5 £ 1 around 7
gives for Eq. {6)

L. N

g dg
This relation shows that thin foils will not split provided the
resistivity increases linearly with heat content. Splitting will
oceur after a break in the resistivity at melting, ¢ = 1, when
the resistivity beyond melting increases linearly with a coef-
ficient 3, larger than /# -+ 1. This is certainly the case for
aluminum, where 8 + 1 ~4.8<f53, ~9.

Expanding to third order adds a correction term to Eq.
(73, viz,,
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At splitting, 1 — (f/g)df /dg ~( and the bracketed part of
the correction term vanishes. When there is a sudden in-
crease in the resistivity at melting, d°f /dg’ is large, and the
remainder of the correction term in the [- - +] is negative;
the thin foil is guaranteed (o split.

Once the foil has begun to split, the mass on the left of
the splitting point x, disappears from the foil’s backside, t.e.,
the mass loss is px, and the mass loss rate is p dx, /3¢ The
splitting point x, moves into the foil as dx,/d¢, which is
(Ix,/8q) X (dg/dr)Y(r/t). Assuming that Ix,/Jg remains
approximately constant, e.g., equal to the value where the
foil starts to split dx,/dg~ (Ix,/3g) (x, = (), the mass loss
px, follows by integration over time. Clearly the mass loss is
proportional to the heat content @, and equivalently to the
magnetic pressure p,H 2/2. This was already found in pre-
vious numerical studies.’

The progressive magnetic wave illustrates that the foil
splitting process is connected to the change of resistivity
n = 1, f (g) with heat content ¢. Splitting tends to occur
where the resistivity increases rapidly with heat content, as
happens at melting. The mass loss is proportional to the
magnetic pressure g,/ 2/2. Qualitatively these conclusions
should remain valid for more realistic situations; magnetic
diffusion is often’ well approximated by a progressive wave
profile, even though the current only approximates the cor-
rect current rise [typically sin ¢ /rvs (¢ /7)'/?].
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