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Scaling of the form x = ax', t = a"f, ¢ = a™Q of a nonlinear partial differential equation for g is
connected with the form of the auxiliary functions in an inverse scattering method (AKNS scheme).
Solvability of an equation by this scheme is treated. It is shown that only equations with m =2 are solvable
by using the method of inverse scattering in conjunction with the Schrddinger eigenvalue equation. The
criterion m = 2 restricts the form of the terms in these equations. The terms, powers of g and its
derivatives, can be found by inspection. A separate problem, the decay of a single soliton in the Korteweg—de
Vries equation with damping, is solved using only scaling properties.

1. INTRODUCTION

Many nonlinear partial differential equations are
invariant under scaling. An example is the Korteweg—
de Vries equation! (KdV)

g, +12¢g, +q, . =0. (1.1)
The scaling
x'=ax, V=d%, qlx,ty=amQx’,t), (1.2)

with the choice

h=3, m=2,

leaves (1.1) invariant., The scaling has been used to
find polynomial conservation laws,2°

Here we will give some other consequences of this
scaling invariance, and give some examples. In Sec, 2
scaling in the formulation of Ablowitz ef al.* (AKNS
scheme for short) is treated. Assuming a scalable
equation, it is shown that only terms of a certain type
can occur in the various auxiliary polynomials. It
should be stated here that some nonscalable equations
are exactly solvable in the AKNS scheme. Such equa-
tions are not treated. A restriction is found for solvabil-
ity of a scalable equation. In Sec. 3 we prove that a
scaling invariant equation can only be solved by an
inverse scattering method on the Schrodinger equation
when m =2 in (1.2). This determines the type of terms
in that equation, It is expected that possible higher or-
der inverse scattering schemes have similar properties.
Nonlinear partial differential equations often describe
some physical situation to a first order approximation
in some small parameter. Dissipation of energy (damp-
ing) can be an important higher order correction to the
equation. As an example, the KdV equation with damp-~
ing is treated in Sec. 4. The functional form of the time
dependence of a single soliton is shown to depend only
on the power in the damping law. Only the scaling prop-
erties are used in the derivation.

2. SCALING IN THE AKNS SCHEME

Some nonlinear partial differential equations can be
solved exactly by an inverse scattering method with the

set of linear equations®
Uy, t iU = quy, Vg — 1E0= 704, 2.1
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where
(2.2)

For equations invariant to a shift in x and ¢ the functions
A,B,C, and » are functions of x and ¢ as functionals of
q,q,, ***. They can also be functions of the parameter
Z. The nonlinear equation of interest is one of the
consistency conditions of (2.1) and (2.2), obtained by
cross differentiation

vy, =Av, + Bv,, v,,=Cv, - Av,.

q,—2Aq-B_ ~2itB=0. (2.3)
Two other conditions are

Ax—_—qC-—rB, (248.)

C.=7,+ 24y +2i¢C. (2. 4p)

For A, B, C, and » we choose polynomials in ¢, ¢,
., and . In addition, the equation for », (2.4b),
has to be consistent with (2. 3).

The scaling (1.2) leads to restrictions on the type of
terms we can have in these polynomials. Without loss
of generality we can take for the scaling of the new
quantities in (2.1),

v, =a’ V(&' 1), v,= V0, ),

(2.5)
t=aZ, r=a"R(x’, ).
Equation (2.1) is invariant if we choose for j and n
j=m~1, n=2-m. (2.6)

Equation (2.2) is also invariant, and A, B, and C scale
as
A=adA QW ,1"),Q, ...,2),
B=a"iBNQ,Q., ...,2),

C=a~C"Q,Q,...,2).

x?

2.7

A, B, and C are homogeneous functions of a. Often A,
B, and C are polynomials in ¢, the derivatives q,,q,,,

., and ¢. In this case each term in the polynomial
must have the same scaling power as the polynomial
itself. This determines the type of terms that can occur
in this polynomial. The terms in polymial conservation
laws can be found this way.

As an example, consider the KdV equation, for
which m =2 and h=3. It follows that j=1,
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A=a,*+ a,8q + axq,,

B:b1§4+b2§2q+b3§qx+b4q“+b5q2, (2.8)

C:CI§2+Czq’

and 7 is constant, as its power n=0. These are indeed
the terms that appear. The complex coefficients a,,
. , C; can easily be calculated.

For the nonlinear Schrodinger equation [Eq. (2.14)
with s =2], m=1 and =2, We find for A

A=a,l®+a,tq + a38q* + aqq* + asq, + asq; - (2.9)

B and C contain the same terms, as the parameter j=0.
For », with parameter =1, we have

r=d{+dyg +dag*. (2.10

Not all terms actually appear, as (2.3) and (2.4) give
additional restrictions. The MKdV equation [Eq. (2.12)
with s =2] also has the forms (2.9) and (2.10).

The different terms in the equation for u=v,/v,,
can be obtained. However, not all terms have the same
invariance properties under the transformation (u, ¢)
~(tu,+ £*) used in the derivation of Backlund transfor -
mations,® so the Biacklund transformation cannot be
found by inspection. If it exists, it has the right scaling
properties (compare the explicit forms in Ref. 5). This
scaling of the Backlund transformation was known
earlier for the sin-Gordon equation. ®

The homogeneity of A, B, and C has another con-
sequence. Successive partial differentiations of for
example A, with respect to the continuous parameter a
(@,x',# and Z fixed) at a=1 (Euler’s theorem) gives

24 A gA
n + +1 +ouo:
5y e Tt Vi, o
aZA BZA azA BZA
. 2,20 22 4 9 +1 Cyryms
Ep T Imta gy i s Y Emnt Daggg -
+eco=h(h-1)A, (2.11)

For h positive and integral the rhs is zero after % dif-
ferentiations. For positive integer m this can only
happen if each of the partial derivatives is zero. Thus
A,B, and C are polynomials ingq,q,, ..., and ¢. If
m =0, all terms except the ones with 4 have to be zero.
A can then be an arbitrary function of ¢, times a func-
tionof ¢,, . . ., and &, This is the case for the sin-
Gordon equation.**? For m = - 1 we have the same
property with ¢_.

The above can decide whether a given equation fits

the AKNS scheme. For example, for a generalized KdV
equation

g, +2(s +1)(s +2)/s%%, +q,.=0, (2.12)

with s = 3,® the parameter m = 4. With (2.6) we have
j=3 and n=-2. B is of the sixth order in @, and has to

contain a term ¢/?. This gives the term ¢'/%g_in (2.12).

But then the sixth partial derivative with respect to ¢
does not give zero, (2.11) is violated, and we conclude
that (2.12) does not fit in the AKNS scheme.

If the order s in (2.12) is greater than 2, we have

the noninteger scaling
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(2.13)

Similarly, the equations with s > 2 do not fit the AKNS
scheme. B is of order 2+2/s in ¢, and contains a term
g*'. The rhs has noninteger power, and does not vanish
after s +1 differentiations. This excludes a polynomial
for B, The same is true for higher order nonlinear
Schrodinger equations

iqt+qxx+2(s+2)/s?‘|q|sq:0.

ms=h-1=2, m=2/s.

(2.14)

Here A has a term |¢l%, giving |q!%g in the equation.
After } differentiations the lhs still contains a term
q**, and (2.11) is violated.

Another way to decide whether a given equation fits
the AKNS scheme uses the conservation laws. An equa-
tion that fits the AKNS scheme has an infinite number of
these. " It is easily verified that there is one for each
scaling power,

L(q)=a"'(Q).

Some way be trivial, for example, the even ones for
the KdV equation.

(2.15)

Conversely, an equation that does not have the
sequence (2. 15) does not fit in the AKNS scheme. It is
relatively straightforward to find a nontrivial conserva-
tion law with a given scaling, if it exists. By verifying
the first few conservation laws we can see easily if a
given equation fits the AKNS scheme. As an example,
for the generalized KdV equation (2.12) we find conser -
vation laws of power 2/s -1 and 4/s - 1,

0 2
ﬁIZ/s-lzﬁ/q dx=0, (2.15a)
d 0
a_tl‘“s'l:ﬁ,/-qz dx=0, (2.15b)
but a conservation law with power 1,
3 -1)(s -2
3 qsdxz—%/qs'gq;dx, (2.15¢)

only exists for s=1 and s =2. As seen above, (2.12)
for s=1/2 or s> 2 does not fit the AKNS scheme.

3. EQUATIONS SOLVABLE BY THE INVERSE
SCATTERING METHOD FOR THE SCHRODINGER
EQUATION

From (2,1) we have
3.1)

This is the Schr6dinger equation for an inverse scat-
tering method, with »¢ as potential, if ¥, is zero.

Vzex + (§2 - Vq)vz + YU, = 0.

Then the parameter % is zero, and we have with (2. 6)
(3.2)

So only equations with scaling parameter m =2 can be
solved by inverse scattering on the Schrodinger equa-
tion. The parameter % is not determined by this argu-
ment. The terms in the equation for g are now com-
pletely determined for given k. As the first example,
for 7=3 we find the terms of the KdV equation (1.1).

n=0, m=2, j=1,

For =15 we have the form

qt +P1q2qx + (quqxxx + P3qqux)+ qxxxxx = 0’
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where terms transformable into one another have been
grouped together with parentheses. We can establish the
terms in A, B, and C, as done above, and calculate

the constants p with (2.3) and (2. 4). This gives

P,=3¢P,, P,=2P,. (3.4)

Equation (3. 3) is identical to the one given by Gardner
et al.’ (p. 132), after an independent scaling of ¢ and ¢
to change the coefficients. The next one, for k=17, is
obtained in a similar way. With »= -1 we find

q,+110¢%¢, + T0(¢%q,, + 499,4,, + q.>) + 14(qqy + 3¢9y
+ ququxx)+qVII:0' (3 5)

(The roman subscripts denote the number of x deriva-
tives.) Existence of these equations is not guaranteed by
scaling alone, as the recursion relations for the co-
efficients of the terms in A, B, and C which follow from
(2.3) and (2.4) are overdetermined.

Another way of calculating the coefficients in (3. 3) is
with the conservation laws. The terms in the conserva-
tion laws only depend on m, but the coefficients can
differ with the different equations. As we want (3.3) to
be exactly solvable we can assume the same conserva-
tion laws as for the KdV equation. From (2, 15b) we find
the last ratio of (3.4), and from the next conservation
law

I,= [ (¢®+ bg?) dx,
P,=-(3/2b)P,, P,=-15/3b.

With the coefficient b=~} as for the KdV equation we
have the first ratio of (3.4), with y=-1 and P,=10.
The coefficients in (3.5) could be found similarly. We
then have to use I, also.

(3.6)

4. DAMPING IN THE KdV EQUATION

The KdV equation with damping will be treated in this
section, as a different application of the scaling prop-
erties. Energy dissipation, accounted for by damping,
is an important higher order effect in some physical
applications of the KdV equation.'® If the damping is
weak it can be taken into account by damping each
Fourier mode separately.!’ Qur example, the KdV
equation with damping, is

q;+129q,+ q,.. + FT"{¥(R)g(k)]= 0.

FT denotes Fourier transformation, ¥(k) is the damp-
ing, and ¢(%) is the Fourier transform of ¢q(x,#). A
stationary soliton solution of the equation without damp-
ing will now decay slowly. We will show, by a simple
scaling argument, that the time dependence of the decay
only depends on the power d in the damping law

viR)=¢|k|?, e<1.

The soliton balances nonlinearity and dispersion. As
these are the dominant effects, we expect the soliton to
keep its functional form

1
~cosh®(x — 4f)

4.1)

(4.2)

Q + 0fe). (4.3)
We assume'®!! that the weak damping slowly changes the
scale a, a=al(t), of the scaling (1.2). The decay of the
soliton can then be found by!'2 the equation for the energy
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of the soliton part,

2 qzdx+41rf (R q(k)|2dk =0. (4.4)

ot

The calculations are now simple. For the Fourier
transform g(k) of g we have the scaling, with (1.2) and
m=2

q(k)za""lQ(k')=—2-1; fq(x) exp(- ikx) dx, (4.5)

B =k/a.

Then an equation for a(¢) follows, using the scaling (1.2)
and (4.5),

da Be

ga__ ___DPE __ _an
at  ACm-DT (4.6)
where A and B are the constants
A= [ @ax =4r [~ |Q®")|2dr’,
0
B=d4n [” &' [*| Q)| *dk’. 4.7
The solution of (4. 6) is
a(0)
= 4.8
=T+ e/ (4.8)
_ad-l(o) B
V=em-DA%

together with the limiting case of exponential decay
when d=0. The manner of decay is only determined by
the power d in the damping law, and not by the various
parameters in the undamped equation, or by the initial
condition, These énter only in the constants,

The constant B/A can be calculated by taking the
Fourier transform of (4.3). It follows that

B T(d+3)e(d+2)

AT TR (4.9)

where ¢ is the Riemann zeta function. The result (4. 8),
with the constant (4, 9) and m =2 contains the four cases
treated before. !

The calculation proceeds in the same way for other
nonlinear equations with damping (or growth) terms,
Examples are the generalized KAV equation (2.12),
for s+ 4, and the nonlinear Schrodinger equation.

CONCLUSIONS

Some implications of the scaling (1.2) have been
treated. Scaling both explains the form of the various
auxiliary functions in the AKNS scheme, and yields the
various equations solvable by the inverse scattering
method using the Schrodinger equation. Possibilities
for their terms can be found by a simple inspection.
Solvability of an equation in the AKNS scheme is re-
stricted by the scaling properties. In a separate applica-
tion of the scaling properties we have shown that the
time dependence of the decay of a single soliton in the
KdV equation follows from scaling only.
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