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The scaling properties of the equations describing the motion of helical curves determine the scaling of the
associated nonlinear evolution equations. Only two polynomial scaling-invariant evolution equations can be
found. Of these, the nonlinear Schrddinger equation has the physically correct scaling invariance, but the
modified Korteweg—de Vries can not be connected to realistic helical curves.

Many physical phenomena and the equations that de-
scribe them are invariant under a change in scale. Scal-
ing invariance of a linear equation leaves the dependent
variable unaffected, but in nonlinear equations the de-
pendent variable must typically scale in some specific
way to retain the invariance, depending on the equation.

In an extension of Hasimoto’s work, ! Lamb? recently
found an interesting connection between various non-
linear evolution equations and the motion of vortex fila-
ments or helical curves. The vortex motion equations
are linear, and yield in a natural way the linear inverse
scattering equations associated with the nonlinear evo-
lution equations. The equations in question are the
sine—Gordon and Hirota® equations. The latter contains
the modified Korteweg—de Vries and nonlinear
Schrodinger equation as special cases.

This paper shows that scaling invariance® of the
vortex equations (1) is consistent only with one particu-
lar scaling of the nonlinear evolution equation, namely
that of the nonlinear Schrodinger equation. Specifically,
only this equation is connected to physically realizable
vortex motion, i.e,, motion with a given scaling in-
variant circulation, The other evolution equations dis-
cussed by Lamb can be obtained by allowing the circu-
lation to change with scaling, or by considering a dif-
ferent dependent variable.

It is worth noting that invariance transformations of
nonlinear evolution equations have been investigated
recently in some detail. 5 That work exploited group-
theoretical properties of infinitesimal invariance trans-
formations. The scaling transformation used here is
finite, and can be generated by iteration of its infinitesi-
mal counterpart. We consider the finite scaling trans-
formation because it is a fairly obvious and convenient,
but yet nontrivial and hence an attractive means for a
preliminary investigation of nonlinear equations. For
completeness we note that nonlinear equations with
soliton behavior need not be scaling invariant. 3.4

The association of nonlinear equations with helical
motion proceeds as follows. 1.2

DWork done under the auspices of the U.S. Energy Research
and Development Administration.

898 J. Math. Phys. 19(4), April 1978

0022-2488/78/1904-0898%1.00

The Serret—Frenet equations are

~

fS:Kﬁ, (la)
Bs:—‘rﬁ (lb)
iy =Th kI, (1c)

where the subscript denotes partial differentiation with
respect to the arc length s and the functions «(s, f) and
7(s,!) are curvature and torsion respectively, which
also depend on the time /. The tangent vector { is de-
fined by the derivative of the position vector X(s, {),

[=Xs, 1), (1d)
while 7 and b are the normal and binormal to the curve.

The motion of the vortex is approximated by
X, =Gkb, (1e)

where G is proportional to the circulation, the integral
of fluid velocity around the vortex. The vortex strength
G is constant for any one vortex, and can be chosen
unity by suitable normalization of time /.

With introduction of the complex vector N(s, ),

N=(n+ib) explé f_ids'(T—To)}, (2a)
and the complex scalar

p=rexpli [ Lds"(r-7)], (2b)
(T() is the asymptotic value of the torsion as |s| =),
combination of Eqs. (la)—(lc) yields

Ny +iT)N=~ 4, (3a)

[o=5(§*N + yN*). (3b)

The function ¥ will be the dependent variable in the
nonlinear evolution equation, and is assumed to vanish
as |s|—o,

The norm-preserving variation of N and { in time,
on the other hand, can be written as'

N, =iRN + I, (4a)
fy = = S (y*N + yN*), (4b)

where R(s, t) is real and (s, {) complex. The equation
of motion (le) can be expressed as

X, =C*¢*N+CyN* + 60, C=5(5+in), (4c)
where ¢, %, and 8 are real functions of s and { yet to

be determined. Equating mixed second derivatives of
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N from (3) and (4) yields

d, ty, +i(Tey — Rp)=0, (5a)

R, =3ilyy* = y*y). (5b)
Furthermore, use of X,, =X, gives®

= 3y =(Cp), +iT,Cyp + 36y, (6a)

6=ty (6b)
and, using Eq. (2b),

Re=[0]) o= 2nly[% - 6,7 (6c)

The desired evolution equation for 3, Eq. (5a), con-
tains only one time derivative. The auxiliary functions
R,v,t, and ¢ are related by Egs. (5b)-—(6c). The linear
inverse scattering equations, which allow us to solve
Eq. (5a) for y analytically, follow from (3) and (6) as
shown by Lamb, They contain R and y with 7, as the
eigenvalue.

How do Eqgs. (1)—(6) behave under a scaling trans-
formation of the spatial coordinate s and time #? This
transformation has the form

(7a)
(To)

s'=uas,
t=aht.
The scaling variable @ and exponent 7% are real.

We first consider scaling of the spatial coordinate s.
The spatial position X should transform like s, Eq.
(7a), Thus the tangent vector #, Eq. (1d), is invariant,
consistent with the physical meaning of f as the unit
vector tangent to curve X(s). The scaling of curvature
k(s,t), torsion 7(s,t), and thus the dependent variable
¥ is, from Egs. (la)—(1c), given by

Pis, y=ay’(s’", ¢'). (7c¢)
The phase of y,
o(s, )= [ ds"(r=7,), (7d)

is invariant: Only the magnitude of § changes under
scaling, The unit vector #, b, and thus N, are invariant
as they should,

At this point we can already negate a direct associa-
tion between helical curve motion and those nonlinear
evolution equations with a scaling different from Eq.
(7c). An example is: the Korteweg—de Vries equation
¢, + o, + ., =0. Comparing the terms ¢, and ¢
it is clear that ¢ scales according to ¢(s)=a?*¢’(s’),
in contrast to Eq. (7c¢). Thus the Korteweg—de Vries
equation can not be identified with the evolution equation
(5). [We refrain from additional transformations on the
dependent variables, such as the Miura transformation,®
which connects the KdV equation to the modified KdV
equation: The MKdV equation, with nonlinear term ¢3¢,
has the correct scaling (7c). ]

Having studied the scaling properties of the purely
geometrical part of helical curve motion, we now pro-
ceed to examine scaling of time according to Eq. (7b)
in the equation of motion (1e). The parameter G, pro-
portional to an integral of velocity x length, scales as G
= a?4G. When in addition we use the scaling of k, we see
that Eq. (1e) is only scaling invariant when p=2.
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Hasimoto® found the corresponding nonlinear Schrddinger
equation, which is the only possible one as will become
clear later.

However, we could artificially consider a vortex with
circulation G dependent on the scaling parameter o as
G(a) =G(a =1)a?**., Equivalently, we could choose
Eq. (le) for our dynamical equation, but refrain from
an interpretation in terms of vortices. Then nothing
compels us to take =2, and we can consider % an
arbitrary real constant,

With this assumption it follows from the defining
relations (4) that the auxiliary functions R and v, 5 and
¢, and @ scale as

R(s,t)=a"R'(s", "), v(s, t) =aM/'(s’,t'), (8a)
TI(S, 13 =ah-277,(s’) t,), 5(8, 1) :ah-2§l(s" t,)9 (8b)
8(s,t)=a™* 4’ (s, 1). (8¢c)

The desired evolution equation (5a) is also scaling in-
variant, since it follows from scaling-invariant equa-
tions (1) and (4).

At this point Eq. (5a) is an evolution equation for
with unknown functions R(s,t) and y(s,t). Through Eq.
(6) these functions are functionals of . Equation (6)
contains only multiplications of the functions R, v, 1, ¢,
and 9 with each other and with y and its s derivatives.
This suggests that R, ..., 6 can be chosen as polynomials’
of y and its s derivatives, with 7, appearing as a para-
meter, and the coefficients independent of s or ¢. Con-
sequently, the evolution equation is also a polynomial
in these variables.

The individual terms in a scaling invariant polynomial
must each scale in the same way as that polynomial.
Each polynomial, R, y, etc., occurring in Eqs. (5)
and (6) can thus be written as a sum of specific terms,
with coefficients that follow from (5) and (6). Below
we give an example of this procedure for 2=4.

The choice h=2 and h=3 respectively yields the
nonlinear Schrédinger equation iy, + 2y, + |¢ "y =0,
and the modified Korteweg—de Vries equation y,
+39% + 945, =0. It is clear by inspection that the
scaling (7) leaves these equations invariant. Further-
more, the functions R and vy are invariant: for example,
when k=2 we have?

R=|p|* - 272 and y =24y, - 27 .

Restricting the functional dependence of G{a) to
powers of the scaling factor « can only yield evolution
equations that are scaling invariant. A more general
functional dependence for G(a) allows the Hirota equa-
tion, which is not scaling invariant.

Instead of considering evolution equations with de-
pendent variable y one can look for evolution equations
with dependent variable the phase o, given in Eq. (7d).
This quantity is scaling invariant, just as any func-
tional of 0. Therefore, evolution equations for o are
not restricted to polynomials, unlike evolution equations
for y. For o one finds the sine—Gordon equation o,
=sino. This equation also follows when one considers
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o= [5.(s,t)ds. However, the scaling exponent # be-
comes i =-1, which is not physically realizable.

We now attempt to find an evolution equation for y
with scaling exponent =4, Consider the polynomial ¢
with scaling power k-2 =2, Its most general form is
a sum of all possible real terms, each with scaling
factor o®:

t=c M lz + Cz‘rg + 0370(1/) +¢'*) + ic470(¢ -9 *)
+Cs(¢’s+¢:)+ics(¢‘s‘¢‘:): 9)

where the coefficients ¢, —c; are arbitrary real num-
bers, to be determined by Egs. (6b), (6a), and (5a).
(A term such as 7,7y, is excluded because 7, must be
allowed to take any real value, including zero.) Equa-
tion (6b) implies

[ ]y fads =o, , (10)

for arbitrary . Thus the coefficients ¢, —c, all vanish,
as none of the terms cancel, or can be integrated to
zero, Consequently, t=0=0, Since 6,=0 and the s
dependence in 6 enters only through y(s, f), 6 is inde-
pendent of ¢, and can only be a function of the constant
parameter 7, Because 6 scales with exponent #-1=3
[Eq. (8c)], the most general form of 6 is 6 =qa7}, where
a is an arbitrary real constant. The functions 5 and R,
with scaling exponents h —2 =2 and k=4 respectively,
follow in a similar way from Eq. (6c) as

n=bly[*+erd, (11a)
R=3b(¢|*+icmi|u | (11b)
Equation (6a) now yields for y:
y==ibl[4] )~ derip, +7ob 0]y
+(c—a)Tiy. (11c)
Substituting R and y in Eq. (5a) leads to
g = by 9= 50101y + 2670l 9,
+ 73— iy, + (b - 20 [0] Y]
+(@2c=-a)T¥, +ilc-a)Ty=0. (12)

The parameter 7, is the eigenvalue of the linear scat-
tering equations, ? and has to be determined by them,
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Consequently, we must choose the constants a, b, and
c such that 7, disappears from Eq. (12); hence the
trivial result a=b=c=0, y,=0.

Proceeding in a similar way the case 2=5 again
yields the trivial equation §, =0. Going beyond 1=5 is
increasingly tedious as the number of terms in equa-
tions like Eq. (9) increases rapidly. The number of
equations to be satisfied by the coefficients of the
various polynomials, however, increases even
faster. The likelihood of finding these relatively few
coefficients when many more equations than vari-
ables must be satisfied seems remote, but cannot
rigorously be disproven. The discussion suggests,
however, that the connection between helical curve
motion and soliton equations found by Lamb? is acci-
dental, and cannot be extended to higher order than
# =2 for the nonlinear Schrodinger and =3 for the
modified Korteweg-de-Vries equations.

In conclusion, scaling invariance of vortex motion
equations only allows the scaling of Eq. (7c) for the
dependent variable in the associated nonlinear evolution
equations. Scaling invariance consistent with physically
acceptable vortex motion allows the nonlinear
Schrédinger equation only, It is furthermore suggested
that helical motion can be connected only to those
nonlinear evolution equations already found by Lamb,?
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