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The Benjamin—Ono equation that describes nonlinear internal waves in a stratified fluid is solved by a
pole expansion method. The dynamics of poles which characterize solitons is shown to be identical to the
well-known integrable N-body problem of Calogero, Moser, and Sutherland.

Recently, great progress has been made toward solu-
tions of a class of nonlinear evolution equations that ex-
hibit solitons.! The remarkable behavior of stability
and nonergodicity of these integrable dynamic systems
has attracted attention from both physicists and mathe-
maticians, Especially interesting are the wide applica-
tions solitons enjoy in various branches of physical
theories.?

In this Note, we report yet another example of a physi-
cal application of this remarkable phenomena. Multi-
soliton solutions are found explicitly for nonlinear in-
ternal waves propagating in a deep stratified fluid, In
this case, instead of the well-known Korteweg—deVries
equation that describes shallow water waves, ! Benjamin
proposed the following nonlinear integrodifferential
equation, ®

th + zqqx +qux = 0’ (1)
where H is the Hilbert transform operator defined by
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The linear dispersion relation for Eq. (1) is w(k)=121%].

This equation was later rederived in a more rigorous
way by Ono! and is therefore named the Benjamin-QOno
equation. Benjamin® found a single solitary wave solu-
tion which has a Lorentzian profile,
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with constant velocity v, height 4», and width 1/v. Ben-
jamin® and also Davis and Acrivos,® who performed ex-
periments in water tanks had observed these solitary
waves. They also noted that two such solitary waves
come out of collisions from each other unscathed like
solitons in the Korteweg—-deVries equation, Recently,
Case and Rosenbluth® have found that the single solitary
wave solution (3) is stable against linear perturbations.
Meiss’ and Pereira integrated (1) numerically and con-
firmed the nonlinear stability of the solitary wave solu-
tions (3) by following collisions of these solitary waves.
They also observed that a general initial wave profile
almost always breaks up into these solitary waves,

(3)
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Joseph® applied Hirota’s method showing the existence
of at least a two-solitary wave solution, All these facts
strongly suggest that these solitary waves should be
solitons. We will show in the following that this is in-
deed true. Equation (1) is integrable analytically with
multi-soliton solutions.

We apply the pole expansion method of Airault ef al.®
and also the Choodnovsky brothers!® to Eq. (1). From
Eq. (3) we note that the single soliton solution has a
pair of poles in the complex plane. They are complex
conjugate symmetric with respect to the real axis. This
suggests that we express the general N-soliton solutions
as superpositions of N pairs of poles a; and a¥ (j=1...N)

g™, =Y, L se.c. (4)
k

X —ay

Note that a; is chosen to lie below the real axis, and
also g, #a, for j#%. It is then easy to see that

H(" ‘l‘aj)zx ia: ) ®

Substituting Eqs. (4) and {5) into (1) and noting that
N
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we obtain 2N-coupled ordinary differential equation of
motions for these N pairs of poles

I+Z

k) Ap—Q5 %

(7)
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This is remarkable since the number of unknowns a,
and a} equals the number of equations, Equation (7) is
self-consistent, therefore, it implies the indestructibil-
ity of these solitons, By following motions of these
poles, we are actually following the motion of solitons, .
We can neither create nor destroy a pole and therefore,
the identities of these solitons are preserved,

It is even more remarkable that Eq. (7) can be em-
bedded into an integrable Hamiltonian system, the well-
known Calogero—Moser N-body problem with pairwise
inverse square potential.'™!?* By taking the time deriva-
tive of Eq. (7), and some straightforward algebra, we
can reduce Eq. (7) to the form

. 1
a,—Zkzﬂ:m . (8)
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This is the Calogero-Moser N-body system, known to
be integrable by satisfying Lax’s integrability condition,!!
Equation (8) is equivalent to the operator equation

L,=[A, L]
with
LU:GU&J +i(1 —5“)/(a¢ -—a,), (9)

A”=—im,g; (a; —apy2+il ~5,) (@, —a)%  (10)
Substituting Eq. (7) into Eq. (9), we immediately obtain
the Lax representation for Eq. (7). Therefore, in addi-
tion, to knowing that solitons are indestructible, we
have also established that their motions are non-ergodic.
They are determined smoothly from the initial data (in
the present case, the initial position of the poles). To
obtain explicit solutions of Eq. (7), we derive two sets
of quantities from the Lax operator L, namely, the set
of N motion invariants (action variables),

I,= Tr(L", (11)

such that dl,/dt=0, and another set of N quantities

(angle variables) obtained by Olshanetsky and Perelo-

mov!?

J,=Tr(BL™), (12)
with B;,=a,6;;. It is easily shown that

B,={A,B]+L
and therefore

ddJ,/dt =1, or J,(¢) =1,(0) ¢ +J,(0). (13)

Equations (11) and (13) then explicitly yield solutions of
a,(t). For example, in the case N=2, the two invariants
are

Li=aj+a;

L=a%+ai+[2/la-a,)]. (14)
From Eq. (13), we also have

Ji=ay+az =Lt +J1(0) ,

J2=a1d1 +a2dz=Igt+J2(o), (15)

or
a? +ai = It + 2J,00)t +a%(0) +a5(0).

Therefore, a, and a, are solutions of the algebraic
equation

X% —d X +1[J2 < Lf? — 2J,(0) —a3(0) —a2(0)] =0. (16)

Detailed analyses of this solutions have been studied
by Calogero12 and we shall not duplicate them here. In-
stead, we give an explicit N-pole selution by Eq. 8)
first obtained by Olshanetsky and Perelomov.!® They
showed that eigenvalues of the operator

M(t, ty)=Blty) +(t — o) L(ty), 1mn

coincide with the poles q,(t) for I=1,2...N. Since Bl(¢)
and L(t,) are explicit functions of #,, the initial time,
we thus have the eigenvalues of M as the explicit solu-
tions of the initial value problem for Eq. (8).
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We now turn to solutions of Eq. (8) in the case of
periodic boundary condition. The period is chosen to
be L=27/a,

The corresponding pole expansion for periodic solu-
tions is now given by

gle,)=", iacot[alx —a)]+c.c. (18)
k
and the pole dynamics are governed by
ia,=a Y cotlala, —a)] +a Y cot[ala, —ab)]. (19)
7] %

It can be embedded into the integrable Moser -Suther-
land'* many-body problem,

a, =2f¥3§; csclala; —a,)] cot®[ala, —a,)].

(20)

The corresponding Lax operators are given by Moser!!

Ly =8,a;+i(1 =8;,) acot[ala; —a)], (21)

Ay = —ib; 08 ; csc?[ala; —a,)] +i(1 = 5;) esc®[ala; -a,)].
i

(22)
We do not know the corresponding B and M operators in
the periodic case. However, we can still obtain the
N-motion invariants from Eq. (11). Explicit solutions
can thus be obtained algebraically.

In conclusion, we have solved Eq. (1) with both the
infinite and periodic boundary conditions by a pole ex-
pansion method, The N-soliton solutions thus obtained
is represented by N pair of poles in the complex plane.
Their motions are nonergodic and are governed by the
well-known integrable Calogero-Moser —Sutherland
N-body problem.
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