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The nonlinear Schrodinger equation modified by a damping term is investigated numerically for initial
conditions other than single solitons. With damping, colliding solitons still pass through each other, but
the breather can change qualitatively into two continuously interacting but separated solitons. These
results are consistent with a slow change in the inverse scattering eigenvalues due to the damping.

. INTRODUCTION

The nonlinear Schriodinger equation, Eq. (1), arises
as the envelope equation of a dispersive wave system which
is almost monochromatic and weakly nonlinear,! For
example, two plasma heating problems of current in-
terest are approximated by this equation, in their non-
linear stage, viz., (i) Langmuir turbulence when the
background plasma is assumed in equilibrium with the
ponderomotive pressure from the high-frequency
fields,2'® and (ii) a nonlinear stage of the mode-con-
verted wave in lower hybrid heating of large tokamaks}

When such a wave heats (transfers energy to) the
particles of the plasma, a dissipation term appears in
the nonlinear Schrodinger equation. Since the heating
is slow, the dissipation term is small and can be con-
sidered as a perturbation that, hopefully, leaves some
qualitative properties of the solution unchanged. In
Langmuir turbulence, for instance, the dissipation is
wavenumber-dependent Landau damping,?:® while for the
lower hybrid wave the damping is more difficult to ob-
tain.?

The nonlinear Schrdédinger equation is one of a class
of exactly solvable evolution equations, These equa-
tions have various properties in common, notably stable
nonlinear wave solutions called solitons, and an in-
finite set of conservation laws.*™® 1t is well known®
that a large enough initial condition in such an equation
typically evolves into solitons. Thus, it is necessary
to study the effect of damping on single solitons, but
this is not sufficient; for a more complete understand-
ing one must find out how more general initial condi-
tions behave® under damping.

In a previous paper'® we treated single solitons with
damping as perturbation, and established that single
solitons damp in substantial agreement with a simple
treatment based on their invariant shape and the first
conservation law.''"!'* We discussed, for example, the
influence on the damping rate of the exponent b in the
damping law v, =|k}®, and showed that the damping rate
is a constant only for 5=0 and b=2. Such a compari-
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son between numerical computations and analytical
considerations provides one example of construction
and verification of possible soliton perturbation theo-
ries; after all, damping is just one particular per-
turbation.

A complete perturbation theory for soliton equations
should not only predict the evolution of single solitons,
but ideally should be able to treat arbitrary initial
conditions. In an unperturbed soliton equation, every
initial condition develops into a background (radiation),
which is supposed to disperse away and become un-
important over time, and into solitons, which stay
around permanently (but even this unperturbed solution
can usually not be calculated analytically).

The final solitons may have unequal velocities, in
which case they exhibit pairwise collisions, or they
may have equal velocities (in some equations such as
the nonlinear Schrodinger equation), in which case they
form a nonlinear superposition called a breather,

In the last few years various soliton perturbation
theories'™'® have been developed. These theories as-
sume that single solitons keep their shape, but ad-
iabatically change their parameters (amplitude and
velocity). For more than one soliton, they yield non-
linear relations between all parameters of the consti-
tutent solitons, including the intersoliton distance.
These relations contain coefficients, spatial integra-
tions over the soliton shape multiplied by the perturba-
tion, that are almost intractable for other than single
solitons. Therefore, we have not been able to extend
our detailed analytical checkup on perturbed single
solitons in Ref. 10 to double solitons. Instead, we at-
tempt to numerically confirm the validity of one par-
ticular soliton perturbation theory based on the conser-
vation laws. This approach is especially convenient for
damping, and gave good results with relatively little
effort for single solitons.

For the breather, a superposition of two solitons, we
need two parameters: hence, besides the first we must
use the third conservation law, in which the soliton
parameters enter nonlinearly. For our purpose, the
numerical verification of the two-time-scale assump-
tion common to all soliton perturbation theories, this
nonlinearity and the analytically prohibitive space in-
tegrations over soliton shape and perturbation present
no special difficulty.

This paper, then, extends our previous work!® on
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single solitons to the simplest two-soliton cases,
namely, to collisions of two equal solitons with opposite
velocities, and to the simplest breather. The pertur-
bation is again a simple damping of each Fourier mode
with its own damping rate v, =€|k|®. We concentrate on
the two simplest dampings, namely, collisional damp-
ing, b=0, and the damping b =2, which introduces a
small imaginary part in the coefficient of the dispersive
term, but, in contrast with the comparison with an an-
alytical prediction, here we compare to another numeri-
cal computation that uses the two-time-scale assump-
tion and the conservation laws.

In Sec, II we briefly discuss the inverse scattering
transform and its eigenvalues, and give the relevant
data on damping of single solitons. In Sec. III we treat
colliding solitons. In Sec. IV we numerically study the
damped breather in some detail, and show that its
evolution is consistent with a two-time-scale assump-
tion, In Sec. V we present our conclusions, including
the generalization of these results to soliton perturba-
tion theories.

Il. BASICS

Our nonlinear Schrddinger equation has the form

4, 40,0 +2la g =0, )

where ¢(v,t) is a complex function of the real variables
{ (time)and x (space). A single soliton has the form

4, (x, 1) =2nsech[2n(x - 4&)]exp(i6) , @
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FIG. 1. Undamped solition collision. Parameters are 27
=1.5 and V'=%0.75. (a) Initial condition, (b} collision stage at
t=2.5 with no initial phase difference ¢ =0, and (c) collision
stage at ¢=2.5 with initial phase difference ¢=37.
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FIG. 2. The undamped breather at three stages of its periodic
development; (a) =0, (b) Q¢=47, and (c) Qi=m.

with phase 8=2&x — 4(£2 - ?)t, The parameter 7 deter-
mines the amplitude and inverse width of the soliton,
and 4£ is the velocity. This notation is not the simplest
and deviates from previous use, but is appropriate for
the inverse scattering transform whose notation we will
employ.

Equation (1) has an infinite set of conservation laws.
The first few are reminiscent of a particle mass in
quantum mechanics,

1= flg2ax @)
the momentum, 71, = | (¢*q, — ¢g*)dx, and the energy,
1,- [ la.l2- 1l ar . (@)

(all integrations are over the whole real axis —® <x
<), The higher conservation laws have no direct phy-
sical meaning, and are more complicated.

The inverse scattering transform shows that the com-
plete nonlinear evolution of arbitrary initial conditions
can be understood in terms of solitons, and a nonsoliton
part called radiation. The radiation part is complica-
ted, and we choose not to treat it here,!®

The solitons each correspond to two parameters, the
real part £ and the imaginary part 71, of the eigenvalue
(¢) in some linear scattering problem. In general, it
is difficult to find the eigenvalue for a given initial con-
dition, but one can write down, explicitly, a full solu-
tion that corresponds to given eigenvalues, usually a
complicated combination of exponentials which depend
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on the eigenvalues and on additional parameters that
correspond to initial intersoliton distances and phases.
The solutions are plotted in Figs. 1 and 2 for the two
special cases we consider. Figure 1 shows |q|2 for
colliding solitons with initial condition

g, t =0)=q,(x ~x,, t =0)+q,(x +x,, t =0)exp(i¢p)

()

—J

7, cosh2n,x exp(if, ¢) + 1, cosh2n,x expli€,t)

and g, from Eq. (2). The parameters are x,=3, or an
intersoliton distance 6, amplitude 21 =1.5, and velocity
4£=1+0.75. The initial phase difference ¢ is not visible
in Fig. 1(a) for the initial condition, but the collision
stage is very different for the two cases: for ¢ =0, in
Fig. 1(b), there is a large peak due to soliton overlap
while for ¢ =37, in Fig. 1(c), the solitons are bouncing
off of each other, The final state is similar to Fig. 1(a).
The full solution for the breather is

qx, t)=4i| -

where , =41%, Q,=4n%, and £ =9, - ,. Notice that the
breather amplitude |g|? is purely periodic, with the only
time dependence entering through two occurrences of
cos(f2t). Various stages for the breather evolution are
given in F1g 2, for the particular choices of elgen—
values n, =3 and m, =4. At t=0in Fig. 2(a), ¢(¥,¢ =

=2 sech(x), a single soliton whose amplitude is multi-
plied by two. This narrows slawly to the form plotted
in Fig. 2(b) at f =37. Then, the narrowing accelerates
to the contracted breather stage given in Fig. 2(c) at

Qt =1, Notice the amplitude of the peak, and the large
values of the derivatives ¢, . Breathers with eigenval-
ues other than § and 3 are qualitatively similar at §¢
=7, but at =0 these other breathers can show a double-
humped shape.

For the two cases that we consider with only two
eigenvalues, the values of the conserved quantities are
directly related to the eigenvalues:

I, =4(n, +n,), (72)
1,=16(n,% +7,8,) (7b)
13:16(’115?"%"?*'”1&2—%”2) . (7¢)

For colliding solitons n, =n, =7 and § ==~ §,=§: hence,
1,=0, and I,=32(n-37%). The breather has eigen-
values with real parts equal to zero, but unequal imag-
inary parts: again, I,=0and /,=-¢(n} +n3). Thus,

the eigenvalues can be found directly from the values of
the conserved quantities, by a simultaneous solution of
a first order and third order polynomial equation.

Now, we introduce damping by adding an extra term
to Eq. (1), i FT™* (7,4, ), where FT™' denotes the in-
verse Fourier transform and % is the wavenumber. As
discussed in Ref. 10, in the absence of nonlinearity this
term would damp each Fourier mode, ¢,=1/27 [ q(x)

x exp(-ikx)dx, with its own damping decrement .

We consider the two simplest cases of the model
damping v, =€|k|®, namely b =0 (collisional damping)
and b =2, as a rough but convenient approximation to
Landau damping. For =0, Eq. (1) acquires an extra
term and becomes

iq, +1€q +q, +2(q1?¢ =0, (8)
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7 2(n, — n,)? cosh2m,x cosh2n, x + 4n,m{cosh[2x(n, - n,)]+ cosQi} *

(6)

while the case b =2 just changes the coefficient of the
dispersive term to a complex number,

ig, +(1 —ie)g,, +2|q|2q=0. (9)

These seemingly innocuous changes in the equation
have various and sometimes dramatic effects. Firstly,
with the extra terms the inverse scattering transform
does not apply, which is why we must use perturbation
theory. Secondly, the quantities that are conserved
under Eq. (1) are no longer conserved. The equations
for these changes!® become, for the case 0 =0;

dl /dt =_2¢],, (10a)
and

dl,/dt :—2ef g, |2 - 2]q|* ax | (10b)

al /dt = ~2€ [313-f 2((1,\2—|q["(b‘] (10¢)
For b =2 we obtain

dl, /dt :-2efth¢2dx , (11a)
and

di/dt <=2 [ a7~ 21lal 27 +4la] *lq,Pax,

(11b)
dl /it ==2¢ [ 19,12 +1a12 (@%y +qaz)ax . (1e)

Even though 7/, and I, change in time proportional to €
we will still refer to them as conserved quantities. The
invariant /, always remains zero for symmetric initial
conditions.

We notice that Eq. (10a) describes an exponential
decay for I, irrespective of the solution q(x,t), but
that the others do depend on the solution in some com-
plicated way: The right-hand sides of Eqs. (10b)-(11b)
do not reduce to combinations of conserved quantities.
Compare, for example, Eq. (10b) or (11a) with Eq.
(3b), or Eq. (11b) with the next-higher conservation
law®

15=f del g, 1 -

(a2 )2 - 6lqi%|q, |2 +2q|°].
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However, the right-hand sides are constant when the
solution keeps a constant shape, that is, for a single
soliton. For double solitons, there is generally a
strong dependence of the solution on time, and hence
the expressions in Eqs. (10) and (11) are also time
dependent. In this connection we recall from Ref. 10
that the decrease of I, and I, is consistent with the as-
sumption of a stationary sech-shaped soliton with de-
creasing amplitude parameter. For 6 =0, this is easy
to see in Eq. (10c): The integral is zero, and I, is
proportional to the third power of I,. For double sol-
itons this conclusion is no longer true, because its
proof hinges on the explicit functional form, sech(x),
of the single soliton.

Although it may not be apparent from Eqgs. (11), we
believe that the case & =2 is particularly simple, part-
ly on the basis of Eq. (9) but mostly because in this
case an exact stationary soliton shape can be found.!®
For other values of the damping exponent 6, however,
including b =0, there are shape changes of the soliton
to second order in €: these have a time-dependent ef-
fect on the damping rates that is readily noticeable.

For our purpose, it is convenient to construct a sim-
ple perturbation theory on the basis of the conserva-
tion laws., We adopt a conventional two-time-scale as-
sumption: the constant parameters of the unperturbed
problem, the inverse scattering eigenvalues in this
case, change slowly in time when the perturbation,
i.e., damping, is introduced. This assumption is very
successful for single solitons, or single eigenvalues,
as shown in Ref. 10, With damping, single solitons
approximately keep their shape, which reflects the
continuing balance between nonlinearity and dispersion,
but the solitons adapt their amplitude and width to
agree with the change in the first conserved quantity.

Now, we generalize to more eigenvalues, in which
case the solutions, the breathers, are not stationary;
but, there is still a balance between nonlinearity, dis-
persion, and now also the time derivative (the time
derivative does enter the single soliton balance but in
a trivial way). This balance is only slightly affected
by the damping which, however, causes the conserved
quantities to change according to the exact equations
(10) and (11). In some complicated nonlinear way the
conserved quantities then determine the eigenvalues
through Eq. (7), at least when the number of variables
equals the number of equations. In principle, there is
an infinite number of equations such as Eq. (7), and
we are faced with an overdetermined system. For a
single soliton, we know that the change of a single var-
iable is consistent with at least two of these equations!®
In view of the exact solution for damping exponent b =2,
the damping single soliton is even consistent with an
infinity of equations (7).

Generalizing to double solitons we determine the
eigenvalues by the minimum number of conservation
laws, and ignore the higher ones.

The two time scales in our approach are then: (i)
the slow time scale of order € due to the damping, and
(ii) the natural time scale determined by the nonlinear
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Schrédinger equation (1) and the initial condition. For
breathers, this time scale is 7/[4(n2 - 7n%)], the period
27! in Eq. (6). For stationary single solitons the time
scale degenerates to infinity.

Just as other soliton perturbation theories, the
present approach is analytically prohibitively com-
plicated for breathers, especially for the damping ex-
ponent b =2 when Eq. (11) applies. Since the right-hand
sides are not reducible to conserved quantities, they
must be evaluated with the explicit functional form,
Eq. (6). Numerically, however, the integrations are
straightforward.

Our numerical procedure is then as follows, We nu-
merically compute the integrals in Eqs. (10) or (11) at a
particular time for given eigenvalues 1, and 7, using
Eq. (6). Then, we change the conserved quantities over
a small timestep Af according to Eqs. (10) and (11), and
recompute the eigenvalues at the next time / +At¢ from
Eq. (7). Note that in Eq. (6) we should replace the time
dependence ¢ by 'f‘ Q(t)dt’ in the spirit of the two-
time-scale assumption,

Iteration of this procedure then gives a time evolution
to be compared in Sec. IV with the damped breather as
computed from the nonlinear Schrédinger equation with
damping included, Eq. (8) or (9).

It is obvious how to extend this procedure, in princi-
ple, to cases with more than two eigenvalues. It is only
moderately clear how to include intersoliton distances
and phases: the velocities V(¢) =4&(f) can be determin-
ed from the second conservation law /,, whose time de-
pendence we have not written down. An additional tem-
poral integration then determines the each soliton posi-
tion. This procedure works well for single solitons,!®

However, it is not clear how to include radiation.!s
We do not consider this an important drawback, be-
cause things are sufficiently complicated already with
only eigenvalues, the double solitons treated in this
paper.

I11. COLLIDING SOLITONS

A computation to determine whether two solitons sur-
vive their nonlinear collision is a numerically conven-
ient first step to possible exact solvability of the under-
lying equation. Therefore, in this section we show how
damping affects a soliton collision. The initial condition
(5), shown in Fig. 1(a), consists of two spatially separa-
ted equal solitons with opposite velocities, and a phase
difference ¢. With no damping the solitons would col-
lide, have a complicated nonlinear interaction shown in
Fig. 1, and would emerge unscathed.

We find no qualitative change in this behavior when
damping is included. Figures 3(a) and 3(b) show the
collision stage with damping strength € =0.1 and b =2
for ¢ =0 and ¢ =n, for comparison with Fig. 1(b) and
1(c). Single solitons with b =2 decrease their velocity
on damping, and consequently the solitons reach each
other later than with no damping. For ¢ =0, their colli-
sion still generates a peak, shown in Fig. 3(a) at { =3.0,
with amplitude reduced by damping, while for ¢ =7 the
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FIG. 3. Damped soliton collision with damping parameters
b=2, €=0.1at ¢t=3and { =5. (a) Collision stage at { =3.0 with
initial phase difference ¢ =0. (b) Collision stage at { =3 with
initial phase difference ¢ =7/2. (c) Postcollision stage at ¢ =5
for ¢ =0.

solitons still bounce off each other and roughly remain
single solitons with changing velocities. Figure 4 shows
I, =J|q{? dx, which changes according to Eq. (10a) and
therefore reflects the shape changes during collision.
At first the solid curve, I, for ¢ =0, flattens as the sol-
itons widen in their pull toward each other, and the sub-
sequent steep decline around / =2.75 corresponds to the
peak at x =0 of Fig. 3(a). In contrast, the decrease in
I, for ¢ =n, the dashed curve, is very regular because
there are no appreciable shape changes in the collision.
After the collision the solitons emerge smaller and
slower but otherwise unaltered; but because the soli-
tons are wider and the velocity has decreased, they are
still overlapping at the end of the run, as seen in Fig.
3(c) for ¢ =0.

The case of collisional damping, b =0, is unexciting

-

FIG. 4. I,= []g|? dx versus time for the cases of Fig. 1.
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because now !, does not depend on soliton shape and
just shows exponential decay, while only I/, changes
slightly in time similar to I, for the case b =2. The
solution in x space is a widening and diminishing ver-
sion of the undamped case, with no change in the vel-
ocity.

These computations suggest that it is reasonable to
make a two-time-scale expansion of soliton dynamics.
Unfortunately, the intersoliton distance, which code-
termines the soliton shape, does not appear in the
conservation laws, but must be approximated by a tem-
poral integration of the velocity. We avoid this compli-
cation in our study of the breather, where this inter-
soliton distance appears to remain zero.

IV. THE DAMPED BREATHER

What is the influence of damping on the characteris-
tics of the breather? We recall that the breather in the
absence of damping, shown in Fig. 2, is a purely peri-
odic solution with period T =2n/(4n - 47%): with the
imaginary parts of the inverse scattering eigenvalues
n,=%and n, =3, T=41. Attime { =0 (modulo T) the
breather reduces to a soliton multiplied by two,
q(x,t=0)=2sech(x). At half-periods, (=37, modulo T,
the breather contracts to a very high and consequently
narrow state with large derivatives.

When collisional damping is introduced and Eq. (8)
applies, the invariant I, is exponential in time, in
agreement with Eq. (10a). Figure 5 shows this evolu-
tion, and the behavior of the eigenvalues n, and 1, as
computed from the conservation laws. The eigenvalues
are symmetric around /, =4(i, +1,), and have an over-
all exponential decay with the waviness superimposed.
The waviness is due to the enhanced decrease of /,
when the breather is in the contracted state. The
derivatives are then large |see Fig. Z(C)], and there-
fore, the right-hand side of Eq. {(10b) is large.

In v space the breather approximately returns to its
original shape, just like an undamped breather, but
with decreased amplitude. This explains the increase
in the separation between the waviness of Fig. 5.

The numerical results are rather more complicated
for the case 6 =2, which for a single soliton was the
simplest. In Fig. 6{(a) we plot the invariant [, (solid
line) and the eigenvalues {dashed lines) as functions of

] 1.0 20 30 40 50

FIG. 5. I;= [|q|? dx and the eigenvalues %, and 7, versus
time for a damped breather, with damping parameters b =0
and €=0.1.
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FIG. 6. () I,= [|q|? dx and the eigenvalues 7, and 7, for a
damped breather, with damping parameters b =2 and €=0.05.
(b) The soliton shape measure di 2/dt versus time from Eq.
(9) (solid line) and from the two-time-scale assumption (broken
line).

time. Again, we notice the approximately periodic de-
crease of /,, but now there is a strong step-like de-
pendence of /, on time. The relatively slow decrease of
I, between the “steps” corresponds to full periods, when
the undamped breather would be sech-shaped, while the
“steps” themselves come from the contracted breather
state. However, when we measure the elapsed time be-

o]
-60-40-20 O

20 40 60

FIG. 7. Shapes of a damped breather, with damping parame-
ters b=2 and €=0.05. (a) Initial condition g{x) =2 sech (x), (b)
at =1, from Eq. (9) (solid line) and from the two-time-scale
assumption (dashed line), (c) at¢=3.

879 Phys. Fluids, Vol. 22, No. 5, May 1979

tween two successive steps of I, and correct for the
increase in time scale due to the decreased amplitude,
we find no exact periodicity. A qualitative reason for
this apparent lack of periodicity is evidident in the
space plots of |¢(x)|? shown in Figs. 7(b) and 7(c). With
damping the breather does not return to its original
shape, but instead it seems to split in two soliton-like
shapes that overlap only moderately. Thus, the breath-
er period increases because the mutual attraction be-
tween the two constituent solitons in the breather dimi-
nishes as their overlap decreases.

In Ref. 10 we used the time derivative of /{2 as a
measure of soliton shape, This quantity is plotted in
Fig. 6(b). The various humps, which correspond to the
steep decline in I, but are normalized with I3, have
nearly equal maxima and shapes. This seems to indi-
cate that at least the contracted breather is approxi-
mately scaling invariant. With increasing time there
is, however, a definite increase in amplitude and a
widening of these now slightly asymmetric peaks.

The increase in period and the shape changes of the
breather can be understood from the eigenvalues #;, and
n,, given in Fig. 6(a) by the dashed lines. The smaller
eigenvalue hovers around the initial value 3, but the
larger eigenvalue, initially %, decreases with similar
but larger steps than those of 7,(/,, not shown, has an
even stronger time dependence). Thus, the difference
between the eigenvalues decreases, and hence the per-
iod increases, since T« (2 -~ %)™ for an undamped
breather. The double-humped shape of the damped
breather is less easily understood, because the analy-
tical formula is complicated, but it can easily be shown
numerically that such shapes indeed originate from two
eigenvalues that are close together. The dashed lines
in Figs. 7(b) and T(c) give a plot of Eq. (8) with approxi-~

fa)2

0.5

fo) 1 ] 1 1 |
-6.0-40-20 0 20 4060
X

FIG. 8. (a) I;= [|q|? dx and the imaginary part of the eigen-
values, 7, and the real parts of the eigenvalues, £, for a
damped breather with damping parameters b =2 and 7=0.1,
(b) the breather shape at¢=5.
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mately the eigenvalues at that particular time. These
dashed curves are further discussed later on.

At later times than shown here, or for larger damp-
ings, the two imaginary parts 7, and i, of the eigen-
values ¢ coalesce. At this point the eigenvalues acquire
real parts § which means that the constituent solitons
have obtained a velocity and separate asymptotically.

This is demonstrated by Fig. 8(a) for larger damping
strength € =0.1. Initially, the eigenvalues and I, be-
have qualitatively as in Fig. 4 for € =0.05, but at { =3.1
they coalesce and develop real parts §. The magnitude
of & is proportional to the velocity; this velocity is in-
dicated by the difference between the broken lines, the
sum of the eigenvalues /,, and the solid line. The
solitons at { =5 are given in Fig. 8(b);: They are clearly
well separated, and could very well separate completely
for larger times. Whether they actually separate is of
little practical importance, because the soliton ampli-
tude decreases rapidly for this damping strength € =0.1.

As long as the 1’s differ, the eigenvalue ¢ cannot de-
velop a real part for the following reason. Suppose that
with n, # 5, there would be a real part £ to ¢, and ¢, at
some particular time /’, The ¢’s must be of opposite
sign, because of 1,=16 (£ +1,§,)=0. Now remove the
damping for times greater than /', so that Eq. (1) is
again satisfied and the given initial condition evolves in
such a way that the eigenvalues remain constant. Be-
cause of their opposite velocities, the solitons that con-
stitute the breather must separate to eventually form
two disjoint solitons that are unequal, since the 7's
differ. Thus, we would have an asymmetric final solu-
tion. This cannot happen because the initial condition
q(x,f =0)=2 sech(r) and both Egs. (1) and (9) are in-
variant under reflection x ——x.

The solid line in Fig. 9 shows the eigenvalues plotted
against each other to further clarify the shape changes

1.0 T T )
(a) b=0
€=0.1
05k
"7| 0 1 1
1.0 T T
(b) b=2
€= 0.05
05k w
4
o 1 I
6] 0.5 1.0 .5

T2

FIG. 9. The breather eigenvalues 7y and 7, plotted against
each other, from Eq. (9) (solid line) and the two-time-scale
assumption (broken line). (a) From Fig. 3, (b) from Fig. 4.
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of the breather, The important parameter here is the
ratio of eigenvalues 112/171. The eigenvalue i, for b =2,
in Fig. 8(b), oscillates in a narrow hand around > while
n, decreases until both eigenvalues ¢ obtain real parts.
For /=0, Fig. 8(a), the two eigenvalues oscillate
around the straight line 5, =3 i,. Thus, in this case the
ratio of eigenvalues i,/n, remains at its initial value

3, and corroborates the recurrence of the initially
sech-shaped breather. Note that the oscillation am-
plitude of the waviness remains approximately constant
in time for /=2, Fig. 9(b), but increases for =0, Fig.
7(a). As explained in Ref. 10, this increase is due to
the growth of the damping term relative to the other
terms for decreasing soliton amplitude. In contrast,
when Eq. (9) applies, the case b =2, the damping term
is always € times the dispersion, and the oscillation
amplitude remains constant

All these results are obtained from a numerical solu-
tion of Eqs. {8) and (9), and the eigenvalues are com-
puted from values of the conservation laws which, as
we observe, change in time with large steps. Now, we
must establish the validity of the two-time-scale as-
sumption that forms the basis of the available pertur-
bation theories, including our own in Sec. II.

Ideally, we should do this by comparison of our re-
sults with analytical formulae of the kind written down
formally in Refs. 14~16, or in Sec. II. The analytical
evaluation of such expressions for the breather is,
however, prohibitively complicated and unrevealing.
Therefore, instead we compare with an additional nu-
merical computation which assumes that at time ¢ there
exists a breather solution of the form given in Eq. (6),
with eigenvalues 1, (f} and n,(/) slowly changing func-
tions of time as discussed in Sec. IL.

Results from this computation are shown in Figs. (6),
(7), and (9) by the dashed lines. They are in good
agreement with those from a computation of Eqs. (8) or
(9), given in the solid lines.

The breather shapes in Fig. 7(c) at ¢ =3 agree much
better than those in Fig. 7(b) at { =1, This is due to a
small shift in the times between the two computations
evident in Fig. 6(b). At'the stage / =1 of breather evo-
lution this shift produces a visible effect on jg(x)|?, but
at [ =3 where the eigenvalues are more equal and hence
the period is larger the difference between the |¢(x)|?
is minimal.

The eigenvalue 1, from the full computation is con-
sistently larger than 1), computed through the conser-
vation laws, for equal n,. We attribute this difference
to second-order shape changes of the breather in the
full equation. These will tend to diminish the change in
time of especially I, which, in turn, is mostly reflected
in a smaller change of ij,. Therefore, 7, in the full
computation lags behind the corresponding value from
the conservation laws, in which second-order shape
changes are excluded.

Our arguments here are patterned after those for
single solitons in Sec. IV of Ref. 10, but for obvious
reasons we do not attempt any quantitative analysis.
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V. CONCLUSION

The good agreement between the two sets of computa-
tions demonstrates the correctness of our soliton per-
turbation theory, at least for the breather with two
eigenvalues and with damping as perturbation. We re-
call that our approach is slightly restricted by the ex-
clusion of radiation, and by the lack of intersoliton dis-
tance in the conservation laws. OQur approach does have
the essential feature of all soliton perturbation theories,
namely, the two time-scale assumption. However,
there is no particular reason besides numerical conven-
ience and our familiarity with conservation laws to
prefer their use over other approaches, nor is there
anything special about breathers (again, except for con-
venience as noted earlier). In contrast to our method,
in existing perturbation theories'™!® damping is not
singled out as a particularly suitable perturbation.
Thus, it seems that the two-time-scale assumption that
we have verified for damping will be valid for more
general perturbations; such perturbations, then would
not destroy the existence or even change the value of
the eigenvalues, but they may affect the soliton shape.
An example is an extra term® |¢|* ¢ in Eq. (1).

Hence, we conclude that soliton perturbation theo-
ries, although justified, do not seem practical at
present for anything but single solitons. Even our im-
plementations of the two numerical methods compared
in this paper used comparable amounts of computer
time (5-10 sec on a CDC 7600, for the same time step
At =0.005 and number of grid points 128). Much addi-
tional work will be needed to develop additional approx-
imations that increase the usefulness of soliton per-
turbation theories for multisolitons.
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