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The energy loss from a solitary wave governed by the modified Korteweg—de Vries equation with a
slowly varying coefficient is found numerically to be in good agreement with recent perturbation theory.

The modified Korteweg-deVries equation arises in
the study of various weakly nonlinear dispersive sys-
tems, e.g., acoustic waves in anharmonic lattices,'
Alfvén waves in a plasma,” and internal waves between
two shallow layers of fluids with different density.® In
many cases of physical interest, these waves travel in
a medium which is nonuniform. When the nonuniformity
is weak, these waves are governed by the modified
Korteweg—de Vries equation with slowly varying co-
efficients.® A solitary wave solution of this equation
based on perturbation theory through first order is given
in Ref. 5. As is typical of other weakly perturbed non-
linear equations, to lowest order the solution has the
form of a soliton whose parameters (amplitude, velo-
city, and width) vary slowly because of perturbation.
However, higher-order terms in the solution often
yield interesting effects, e.g., in the damped nonlinear
Schrédinger equation the adiabatic damping rate is
modified to second order in the perturbation strength.®’
In both the Korteweg—de Vries and modified Korteweg—
de Vries equations with slowly varying coefficients, the
first-order terms produce an irreversible energy loss
from the main body of the solitary wave in spite of the
absence of damping terms in the equations.>® This ef-
fect is due to a transfer of energy from the main body
to the trailing structure. In this note we verify the
energy loss predicted by the perturbation theory for
the modified Korteweg—de Vries equation with varying
coefficients® by a comparison with the results of direct
numerical integration of the differential equation.

The modified Korteweg—-de Vries equation with vary-
ing coefficients can be written in the form®

g +0(thiu, +u,, =0, (1)

where the coefficient o(f) is assumed to vary slowly
compared with the time scale on which the soliton
varies. Initially (+=0), it is assumed that 0=0, and the
disturbance is a soliton given by

u(x, 0) = a, sech(a,ok/2x/6'/2) . (2)

Perturbation theory through first order predicts that
the energy in the main body of the solitary wave is®

E(t)=EO)[1 - a(t)/2], (3)

where the initial energy is

e a
O Oy =223 12587, @)
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A(H) = A 140
(== o - dt. (5)
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In order to confirm this energy loss, numerical solu-
tions of Eq. (1) were obtained for o given by

o(t)=0,+3(0, = o {1 + tanh[(t - t,)/T]}, (6)

where {,> T in order that 0=0, at t=0. The quantity o
given by Eq. (6) varies smoothly from g, at =0 to o, at
t=w with a characteristic time scale T. During the
time that o varies significantly, the numerical results
show that the initial soliton given by Eq. (2) develops a
trailing structure with a distinct shelf behind the main
peak, and that this trailing structure changes shape and
separates from the main peak after ¢ no longer varies.
For large t(when 0=0,), a typical numerical solution is
shown in Fig. 1 where the trailing structure has es-
sentially separated from the main body. In this final
state, Eq. (3) predicts that the main body has lost the
energy

E(0) - E(»)=6'/2g,A()/0}/2, (M)

which, because the total energy is a conserved quantity
for Eq. (1), has been deposited in the trailing structure.
Calculating A(x) from Eqs. (5) and (6) and inserting the
result into Eq. (7), we obtain

o _37%(0,+ )0, = 0,)?
E(0) - E(»)= 02a§c71§o§70‘ . 8)

Figure 2 shows the main body energy loss at large time
determined numerically by integrating % over the
trailing structure. Figure 2 is for different values of
the final value o, -of the coefficient o, but for constant
values for the other parameters o,, T, and a,. Also
shown is the corresponding perturbative result from
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FIG. 1. Soliton and trailing structure generated by the time
changing coefficient o(¢).
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FIG. 2. Final energy loss of a soliton vs the fractional change
in the coefficient o.

Eq. (8). Itis clear that the two results are in good
agreement, with better agreement occurring for
smaller values of the fractional change of the coeffi-
cient (0, — 0,)/0,. This is to be expected because Eq. (8)
is based on perturbation theory which requires that®

(0, = 0,)/ada3/?T « 1,

Figure 3 shows the influence of the time scale T on
the energy loss with all other parameters constant.
For sufficiently slow variation in o, i.e., large 7, the
T-! dependence predicted by Eq. (8) is approached.
However, for small T, i.e., a rapidly varying o, the
perturbation result Eq. (8) no longer applies and Fig.
3 shows that the energy loss approaches a maximum
value. This maximum energy loss occurs for an abrupt
change in o and can be found exactly by inverse scat-
tering techniques similar to those used by Tappert and
Zabusky® for the Korteweg—de Vries equation. Thus,
by solving Eq. (1) with 0=0, and with the initial condi-
tion given by Eq. (2), one obtains the inverse scattering
result!?
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FIG. 3. Final energy loss of a soliton vs the reciprocal of the
time scale 7.

which is the upper limit on the energy loss as shown in
Fig. 3.

In conclusion, we have numerically verified the pre-
dicted energy loss from a soliton governed by the modi-
fied Korteweg—de Vries equation with a time varying
coefficient.
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