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This numerical study considers the effect of a zero-order density gradient on the development of Langmuir
wave collapse in two dimensions. Two different situations are considered; (1) an initial soliton is pertubed in a
direction transverse to the density gradient, and (2) the plasma is resonantly driven by an external pump
electric field in the presence of transverse density fluctuations. The principal finding is that the density
gradient can inhibit the development of Langmuir collapse for both the initial soliton and the externally
driven cases. Over the limited parameter space surveyed it is found that collapse occurs for values of the
scaled gradient parameter g 2.5; where g = (9/8)(M/m)"*(A ,/L), M is the ion mass, m is the electron mass,
Ap is the Debye length, and L is the gradient scale length. For larger values of g, collapse is not observed.

I. INTRODUCTION

The dynamics of the two-dimensional collapse of
Langmuir waves in uniform plasmas has been exten-
sively investigated over the past few yea,rs-x.l'4 The
collapse process consists of the unbounded localization
of the high-frequency electric field of a Langmuir wave
inside a density cavity of ever increasing depth and de-
creasing spatial extent. The density cavity is nonlin-
early generated by the ponderomotive force produced
by the high-frequency field. As is well known, in
one-dimensional plasmas, the collapse process does
not occur. In this case, a steady state can be obtained
in which the dispersion (i.e., the finite group velocity
of the wave) exactly balances the nonlinear localization,
and a soliton is formed. However, in two dimensions
the dispersion is not sufficiently strong to overcome
the nonlinearity, and a secular growth of the field with
the accompanying density cavity occurs. Since the
collapse process arises due to a fluid nonlinearity,
i.e., a rearrangement of the electric field energy in
wavenumber space, in an actual plasma the secular
growth is limited by kinetic processes (e.g., Landau
damping) not retained in the simplified fluid descrip-
tion. Therefore, a possible fate of the collapse pro-
cess is to transfer the electric field energy of anex-
tended Langmuir wave into kinetic energy of the plasma
ions and electrons.’*® Consequently, it is of interest
to find under what conditions the collapse process oc-
curs and what limitations must be overcome for its
onset.

Although several studies have been made of the
propagation properties of Langmuir solitons in a one-
dimensional density gradient,7'l° to our knowledge, all
previous theoretical and numerical studies of two-di-
mensional collapse have considered zero order uni-
form plasmas.®"''™'® While this is an interesting simple
environment in which to study the basic process, its
applicability to a laboratory plasma is not ensured be-
cause such plasmas always have a finite density gra-
dient. The present numerical study is concerned with
some aspects of the effect of a density gradient on the
collapse process, and the delineation of the threshold
conditions required for the experimental observation'®
of this process.
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An important and useful feature associated with the
density gradient is that it permits the linear generation
of localized electric fields at selected points along the
density gradient. This excitation can be experimentally
attained by applying an external pump field at a fre-
quency w equal to the local plasma frequency w, of the
selected location along the gradient. The external
pump drives the local plasma resonance and creates a
large localized field which provides a controllable ini-
tial condition for the experimental investigation of
Langmuir wave collapse. In addition, the considera-
tion of Langmuir wave collapse in a nonuniform plasma
and in the presence of an external pump is of interest
in connection with the rippling of the resonance absorp-
tion surface in laser fusion targets and possibly in
future ionosphere modification experiments.

An important effect encountered in a nonuniform
plasma is the intrinsic convection of the Langmuir
wave energy down the density gra,dient.7 Near the w
=w, point this convection occurs at a speed roughly
given by (3/2)5(3k,L)™ 2, where 7 is the electron ther-
mal velocity, %, is the Debye wavenumber, and L is
the scale length of the gradient. This linear process
provides a spreading effect which reduces the effect of
the nonlinearity and can prevent the two-dimensional
collapse, Therefore, it is of interest to find the
threshold condition, i.e., the critical density scale
length L required for the onset of collapse. The pres-
ent study focuses on this issue for two cases; (1) a
pure soliton initial condition, and (2) an externally
driven plasma. For the typical numerical cases stud-
ied it is found that the collapse process does not occur
for values of the scaled gradient length parameter g
>2.5; where, g=(9/8) (M/m)*?*(xp/L), M is the ion
mass, m is the electron mass, and 2; is the Debye
length.

The manuscript is organized as follows. In Sec. II
the mathematical model is reviewed and the geometry
of the problem is described. Section III discusses the
results for the pure soliton initial condition, while in
Sec. IV the behavior in the presence of an external
pump is presented. A discussion of the results is given
in Sec. V.
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Il. MATHEMATICAL MODEL

In the present investigation the behavior of the plasma
is described by the warm fluid a,pproximation,1 i.e.,
wave-particle interactions (e.g., Landau damping, ion
acceleration) are neglected. These kinetic effects are
not important during the early stage of the collapse
process of interest in this study. In the late stage of
the collapse process strong energy absorption occurs
due to electron transit time damping. The description
of such an effect is beyond the scope of this work. In
addition, high-frequency electron nonlinearities, such
as second harmonic generation, are neglected because
they give rise to oscillations which are not normal
modes of the plasma. Also, corrections to the ion-
acoustic wave due to ion nonlinearities are not inclu-
ded.

The high frequency electric field E, is described
through a modulational representation

E,=E(x, vy, t) exp(—iwy) +c.c., (1)

where x is the spatial direction along the density gra-
dient and y is perpendicular to x. The time depen-
dence of the complex vector amplitude E is assumed to
be slow compared with a plasma period, i.e.,

pe
Ia—tzE <« wﬂE\ , (2)
so that only the first order time derivative is retained
in the two-dimensional evolution equation

2i 2 2 (7! X) ]
o) —_ ° - —+—E—E ::0, 3
v [watE+3xDv(v E) ot » (3)

where »n refers to the nonlinearly generated low-fre-

quency density fluctuation, and »n; is the plasma at the
point w,=w along the gradient.

The external pump field E, , of frequency w is as-
sumed to be of the capacitor type (i.e., near field)
and is represented by

E,,=E,exp(-iwt)%, €Y

where E, is the constant strength and % is the unit vec-
tor in the x direction. The zero-order density profile
is taken to be linear, with characteristic scale length
L, i.e.,

2
1- ff =—x/L. (5)

The density fluctuations are determined self-consis-
tently from the two-dimensional linearized ion-acoustic
wave equation in which the ponderomotive force due to
the high-frequency field plays the role of a source,
i.e.,

1 3? )(;‘z) 2(u:n2 )
(?‘; —a—lz - Vz () =V 161T7LOT ’ (6)
where ¢, is the ion sound speed, and 7T is the electron

temperature.

The coupled equations (3) and (6) form the mathemati-
cal description of the problem. It should be noted that
in this formulation the full vector character of the
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electric field is retained, as well as the effect of ion
inertia.

In scaling the physical variables appearing in Eqs.
(3) and (6) one encounters two choices; (1) scaling ac-
cording to the Airy-like scaling associated with the
density gradient,” or (2) scale according to the slow
time response of the ions as is done in the collapse
studies in uniform plasmas.!’*'''"*® In this work we
have chosen the latter scheme in order to retain con-
tact with the previous collapse literature as well as with
the results obtained with the earlier version® of the
computer code used to solve Egs. (3) and (6).

Usingthe scaledvariables £ =x/x,,n=y/x,,T=1t/t,, 8
=E/E,, N=#7/n,, where

xs=(3/2)(M/m)ry, to=(3/2)(M/m)w;®,

7
ne=(4/3)(m/Mny, E;=(64mngmci/3)*"*, 4
results in the scaled equations
5 -
v-<i57r£+v(v~é’)-(N+g£)é’- é’,x):O, (8)
9 v 2| o2 (
Yy N=vV | 8| , 9)
in which two lumped parameters appear. The param-

eter g given by
2=(9/8Y(M/m)**(),/L), (10)

measures the relative sharpness of the density gra-
dient, while the parameter &, defined by

8,=[(3)/2/16)(M/m)*4 E /(41n,T)"?], (11)
describes the strength of the external pump.

It is clear from the definitions in Eqs. (10) and (11)
that the present choice of scaling is optimum for long
scale length profiles (i.e., weak nonuniformity) and
small external pumps. When L is decreased and/or
E, is increased, a more appropriate scaling for this
problem is the Airy-like scaling. In the Airy scaling
one still has two lumped parameters, p and Vz, which
uniquely determine the behavior of the system. The
parameter p =(kp L)*E2/127n,T measures the degree of
nonlinearity, while V2 =(4/3)(M/m)(kpL/V3)?"® ac-
counts for the relative role of ion inertia in the forma-
tion of the density cavities. In transforming these
parameters from one scaling to the other, one obtains
p=(32/9)(8,/2)", V=(4/3)g"®. From this relationship
it is seen that for large values of g and &, the Airy
scaling is more convenient because both p and V can
remain of order unity. For values of g and §, of order
unity, the two descriptions are equally useful, while
for g very small (i.e., uniform plasmas) the scaling
given in Eq. (7) is more appropriate. In either choice
of description, it should be stressed that the real phys-
ical problem has three independent parameters,
(M/m), (kpL),and E3/n,T ; however, the response of the
system has an internal self-similarity governed only
?Y the two lumped parameters (g, &§,) or equivalently
b, V).

The parameter space surveyed in the present numer-
ical study has concentrated in the region where the
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scaling given in Eq. (7) is useful, i.e., both gand §,
are of order unity. However, the values of the param-
eters chosen differ significantly from those of a recent
experiment19 designed to study two-dimensional reso-
nantly enhanced electric fields. The laboratory gra-
dient scale length g and the pump field 8, are larger
than 100 in the present units; therefore, our numerical
results are not strictly applicable to such an experi-
ment. To describe this experiment one should consider
a third scaling, i.e., to the ion time scale, f.=
(m/M)Y?1, and corresponding scalings of space, density,
and fields. It should be noted, however, that in iono-
sphere heating experiments g is of order unity.

The numerical method applied to Egs. (8) and (9)
uses the spectral representation for the derivatives,
and computes the nonlinear terms at each time step
from a Fourier transform to configuration space. The
system is periodic in the v direction. To accommodate
the inhomogeneity term—g£ within the periodic Fourier
method, the system is extended in the x direction by
its mirror image, and periodicity is enforced in the
doubled system. Typical computational parameters
are 32 grid points in y and 32 in x, (64 grid points in
the doubled system) with grid spacings At =0.25, A7
=0.25, and time step 0.02. In the late stages of the
computation nonzero values of |E ;2 and N are some-
times found at the lower boundary in x, thus indicating
a finite leakage from the mirror image of the system.
It has been found that this leakage does not appreciably
change the results, as evidenced by comparisons with
calculations in which a damping term at the lower
boundary is included in Eq. (8).

11l. UNDRIVEN SOLITONS

Before proceeding to investigate the behavior of
Langmuir wave collapse arising from the resonant ex-
citation by an external pump, it is useful to first de-
termine the effect of a density gradient on the collapse
process experienced by an initial one-dimensional soli-
ton, For this purpose the electric field at {=0 is

E=V2 ksech(kf)x . (12)
The density perturbation is given by
N=-2¢ sech’ (k&)1 +5 cos(k,m)], (13)

and 3N/at =0 as in previous numerical studies.’'*® In
Eqgs. (12) and (13) «™ represents the width of the soli-
ton, 6 the depth of the transverse modulation, and %,
the scaled transverse wavenumber of the modulation.
The field given by Eq. (12) corresponds to a stationary
soliton in a one-dimensional plasma without a density
gradient, when the nonlinearly modified density is N
=-]&|%. The growth in the transverse direction is
triggered by perturbing this value of N by the expres-
sion shown in Eq. (13).

An analytical one-dimensional exact solution of Eqs.
(8) and (9) does not seem to exist.” However, if ion
inertia is ignored, i.e., setting N=-~ | 8| inEq. (8) a
linear density gradient can be transformed away by
going to an accelerating reference fra.me,10 and in this
case Eqgs. (12) and (13) are the correct initial condi-
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tions.

The effect of the density gradient has been examined
by solving Eqs. (8) and (9) for different values of the
scaled gradient parameter g. It is found that for «=2,
5=0.1, and k,=27/18, collapse occurs for g <2.5, and
its general features are quite analogous to the results
obtained for a uniform plasma. The typical spatial pat-
terns are shown in Fig. 1 for the case g=1 and a time
7=1.75. In these three-dimensional plots, the top part
represents the two-dimensional (£, ) dependence of
| &%, while the bottom represents the perturbed den-
sity. The development of the transverse modulation is
evident in this figure, in which the maximum value of
| £|% is 40.7 and the deepest portion of the density cavity
is N=-24.0. It should be remembered, however, that
the spatial dependence of the total density in the plasma
is given by N + g&, so that the cavity seen at the bottom
of Fig. 1 is part of a sloping density profile, not shown
in this presentation. Notice also the small regions of
positive density changes adjacent to the collapsing peak,
and the corresponding reduction of | 8|2,

As the value of g is increased, it is found that the
time required to observe collapse patterns of the type
shown in Fig. 1 increases rapidly. For large values of
g, the initial soliton moves rapidly down the density
gradient and the transverse perturbation does not have
a chance to affect its evolution, i.e., the soliton out-
runs the transverse modulation. To quantify this be-
havior it is useful to plot the time evolution of the peak
amplitude of the electric field 1 8 |:f,, for different val-
ues of the scaled gradient parameter g, as shown in
Fig. 2. In this figure one observes a continuous tran-
sition from a collapse case (g=0) with an asymptotic
collapse time 7,~1.,5, to a nearly constant behavior
for g=4. For the various cases that we have run, it
appears that the value of g <2.5 sets the threshold
scale for collapse, at least for the perpendicular in-
stability growth rate determined by 8 and the perpen-
dicular wavenumber %,=21/16. Computations with
other perpendicular wavenumbers seem to confirm
the obvious generalization; collapse occurs when the
streaming of i & |2 into the perturbed density cavity ex-
ceeds the convection of ] & |? due to the density gradient
(see Sec. V).
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FIG. 1. Two-dimensional spatial dependence of the scaled
electric field energy density | § 12 (top) and scaled density
change N (bottom) for g=1.0 at r=1.75. The peak values
are 1814=40.7 and N, = —24.0.
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FIG. 2. Time evolution of the peak amplitude of the scaled
electric field 1812 for different values of the scaled density
gradient; g= 0 corresponds to a uniform plasma.

IV. RESONANT PUMPING

Having established that the collapse of a one-dimen-
sional soliton can be quenched by a finite density gra-
dient above a certain threshold value, we proceed to
examine the behavior of a plasma in which the field
structure is self-consistently determined by an external
uniform pump. The pump gives rise to a resonant
electric field at w =w,(x), whose peak amplitude is
limited, in the small amplitude regime, by the convec-
tion of a Langmuir wave down the density gradient. In
the one-dimensional case, as the amplitude of the pump
is increased, density cavities are generated. These
cavities give rise to the transient enhancement and
localization of the field. However, due to the steady
convection down the gradient, the field localization is
temporary. Consequently, in this environment one ob-
tains a continuous generation of cavities and localized
fields.

One of the issues of interest in this problem is whe-
ther or not the regenerative one-dimensional localized
structures can break-up in the transverse direction,
and what the threshold conditions are for this process
to occur. In a limited survey of the large parameter
space defined by this problem, we have found that it is
possible to obtain a two-dimensional collapse which
arises naturally out of the Airy-like patterns associated
with resonant pumping. An example of such a collapse
is illustrated in Fig. 3. This figure shows the two-
dimensional spatial dependence of the electric field

FIG. 3. Two-dimensional spatial dependence of the electric
field energy density {81,=1.5 at v=3.65 and g=1. 5.
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| & \2 at 7=3.75. The external pump is turned on sud-
denly at 7 =0 with a value of §,=1.5, and the two~di-
mensgional collapse is stimulated by providing the plas-
ma with an initial density perturbation given by N(r
=0) =5 cos(k,n) cos(k,£), i.e., a density bowl with 5
=0.4, k,=21/16, and k, =7/8 and again with dIN/97 =0,

It should be noted that in Fig. 3 the cold plasma reso-
nance is located at £=0 and that the first peak to its
left is not the result of collapse, but rather the typical
Airy peak. This peak experiences a weak transverse
modulation, but no major redistribution of the field
energy occurs. Instead, for the parameters chosen
the collapse occurred on a secondary peak which at a
previous time had its origin at the w, point (£=0), but
which propagated down the gradient in the manner de-
scribed at the beginning of this section. The perturbed
density associated with the field of Fig. 3 is shown in
Fig., 4. A deep cavity of depth N=-19.4 coincides with
the peak of the electric field. An interesting feature
seen in this picture is the appearance of density com-
pressions between the collapse peak and the normal
Airy-like patterns. These are due to the expulsion of
ion density from the regions of high electric field, and,
in particular, from the collapse region.

Figure 5 displays the spatial dependence of the total
electric field | §|? and the scaled density profile N + g¢
along the £ direction (i.e., in the gradient direction)
for a cut along 7=0 corresponding to the transverse
location of the peak electric field at 7=3.75. This
figure clearly shows the usual flattening of the profile
just to the left of the w,=w resonance, and the new
feature associated with collapse at £=-4.0.

To complement the display in Fig. 5 we exhibit the
transverse dependence (i.e., along y) in Fig.6. The
two curves shown correspond to constant £ cuts passing
through the peaks of the total field (solid curve) and the
7 component of the field |8,/ * (dashed curve). Be-
cause of the n symmetry of the collapse, the peak of

&,)IZ cannot occur in the same location as the peak of

8|*; instead, it is located where the derivatives of &§
are large, i.e., to the side of the collapsing soliton.
From Fig. 6 it is clear that the peak value of the £
component of the field is considerably larger than the
peak value of the 7 component. However, because
these two peaks do not coincide spatially it is possible
to find regions in which the two components attain com-

FIG. 4. Density perturbation corresponding to Fig. 3.
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FIG. 5. Spatial dependence of the electric field energy den-
sity I 81? along the zero order density gradient for the case of
Fig. 3. The dashed curve corresponds to the scaled density
profile.

parable levels. This feature should be kept in mind
when interpreting experiments which rely on electron
deflection techniques to measure the development of
the transverse modulation.

Finally, Fig. 7 exhibits the time evolution of the peak
electric field, | &|% and the deepest density cavity N,,.
For early times (7 <2.5) the growth in the peak electric
field is associated with the resonant pumping. During
this stage the field pattern is essentially one dimen-
sional. However, for 7>2.5, one observes the rapid
development of the collapsing field shown in Fig. 3.

In the presence of external pumping the collapse pro-
cess can also be quenched for g =2.5. In this regime
one essentially finds the continuous generation of peaks
and density cavities along the density gradient, as ob-
tained in an earlier one-dimensional study.’

V. DISCUSSION

The principal result obtained in this study is that a
density gradient can inhibit the development of two di-
mensional Langmuir wave collapse. The inhibition oc-
curs for initial soliton-like conditions, as well as for
the external resonant pumping case. Although the
parameter space surveyed has been limited to the neighbor-
hoodofg = 4, §,< 2, and initial field levels |§ (7 = 0)[2 <8, it
is expected that a gradient threshold condition also exists in
the large parameter space not sampled. For our param-
eters the collapse occurs for density length scales such
that g <2.5.

To obtain a semi-quantitative description for the
reason behind the threshold, it should be realized that
a necessary (but not sufficient) condition for the de-
velopment of collapse is that the convection down the

40

E1F—"
FIG. 6. Spatial dependence in the
direction transverse to the den-
sity gradient. | 1% is the total
energy density and 1 §, 1% is the
contribution of the n component,
Curves are obtained along con-
2 stant ¢ values passing through the
"~~~ respective maximum.
o v ~
-8 0 8

N —=
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FIG. 7. Time evolution of the peak amplitude of the scaled

electric field |81 ’2” and deepest scaled density cavity in the
presence of an external pumpé&,=1.5, g=1.5.

density gradient should not outrun the transverse
growth of the modulation. Mathematically, this implies
that v, <v,, where v,=(3/2)5(Ap/3L)"? represents

the intrinsic convection speed down the gradient, For
a rapidly growing transverse modulation, the trans-
verse speed v, is determined by the growth rate v,
i.€., Up=Yn'k, Where k, is the transverse wavenum-
ber. For initial conditions resembling the cases in-
vestigated, the growth rate of the modulation is essen-
tially given by

k |E|
~ phi 'R
Ym (°°4)<k,,) [(64n/3)me T 17 °
which gives rise to the threshold condition

6 (M \° |E|
72"_(5?) <(0.9) (mn 1)
This estimate shows that for a fixed L the initial field
must be above a certain level, or alternatively, for a
fixed |E(T=0)|, there is a2 minimum value of L below
which collapse does not occur. Using the definition for
g and the scaling described in Eq. (7), the threshold
condition in Eq. (15) can be simply put in the form

27 <0.4)]8] .

For the typical initial amplitude used in the soliton
study, |&§|=V®, hence predicting a threshold value of
g=1.5.

(14)

(15)

(18)

To obtain the threshold condition in the presence of an
external pump E,, the electric field | §| in Eq. (15)
should be identified with the resonantly enhanced field
inside the plasma, i.e., |&|=Q.7)(kpL/V3)PE,. Now
solving for the condition required on L leads to the ex-
pression

3 < E,

w2 L (dmn,T)*
which can be satisfied for typical laboratory parameters.
Clearly, Egs. (15) and (17) are simple scaling argu-
ments to be used in making rough comparisons. In or-
der to obtain a rigorous threshold a considerably more
elaborate analysis is required. In particular, such a
study should include the role of ion inertia (e.g., en-
hanced damping® due to ion wave radiation) which is not
congidered in the theories of soliton stability leading to

(17)
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our Eq. (14). Further progress in the stability analysis
along these lines should improve the estimates present-
ed here.
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