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A numerical solution of the damped nonlinear Schriodinger equation is compared to analytical predictions
that assume invariance of the soliton shape. The agreement is fair for the damping laws of the form
v «|k|®. Good agreement is found for y, « k%, and this case is studied analytically including second

order effects of the damping.

l. INTRODUCTION

The nonlinear Schrodinger equation, Eq. (1), arises
as the envelope equation of a dispersive wave system
which is almost monochromatic and weakly nonlinear.?
For example, two plasma heating problems of current
interest in their nonlinear stage are approximated? by
this equation, viz., (i) Langmuir turbulence when the
background plasma is assumed® in equilibrium with the
ponderomotive pressure fromthe high-frequency fields,
and (ii) a nonlinear stage of the mode-converted wave
in the lower hybrid heating of large tokamaks.*

When such a wave heats (transfers energy to) the par -
ticles of the plasma, a dissipation term appears in the
nonlinear Schrodinger equation. Since the heating is
slow, the dissipation term is small, and can be consid-
ered as a correction that leaves some qualitative prop-
erties of the solution unchanged. In Langmuir turbu-
lence, for instance, the dissipation is wavenumber-
dependent Landau damping,?:® while for the lower hy-
brid wave the damping is more difficult to obtain.?

The nonlinear Schrédinger equation is one of a class
of exactly solvable evolution equations. These equations
have various properties in common, notably stable non-
linear wave solutions called solitons, and an infinite
set of conservation laws.®® It is well known® that a
large enough initial condition in 'suc,h an equation typ-
ically evolves into solitons. Thus, it is of special in-
terest to study the effect of damping on solitons,

One usually proceeds by assuming that the parameters
of the soliton slowly change in time, but that the shape
of the soliton, which is a reflection of the balance be-
tween nonlinearity and dispersion, does not change.
This method was used earlier on the Korteweg-de Vries
equation, ®=!! and can be justified by a two-time scale
expansion. 19,12

In this paper we compare numerical solutions of the
damped nonlinear Schrddinger equation with analytical
predictions based on the first few conservationlaws, in
order to see whether this approximate analytical method
is justified. The properties of damped solitons are de-
rived in Sec. II. A comparison with numerical results
is given in Sec. HI. In Sec. IV we show that an exact
solution is possible when the damping is proportional to
k% (k is the wavenumber). Numerical results for the
damped soliton were given earlier, !* but without com-
parison to an analytical theory. Damping has also been
included in the inverse scattering solution of the non-
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linear Schrédinger equation.'* However, that approach
is rather unwieldy, and seems to yield the same results
as the approximate method used here.

il. DAMPED SOLITONS: THEORY

The nonlinear Schrddinger equation for the complex

function g(x, ) is

I SN L

ist ax2+|q‘ g=0 . (1)
All variables in (1) are appropriately normalized. The
damping is conveniently introduced'®='? in the Fourier
transformed version of Eq. (1), by giving each Fourier
mode g,, defined by g, = (1/27)[dx e"*¢(x), a damping
decrement ¥,. Equation (1) then reads

. 9 2 .
i o ax =k (|| O +ina=0 . @)

Introduction of damping in this way yields an expo-
nential decay with damping rate of y, for each mode
when the nonlinear term (l¢l2g), is absent. However,
the nonlinear term couples the modes, so that mode k%
is also affected by the damping of all other modes. The
damping term 7,q, in Eq. (2) has its counterpart in an
extra term in Eq. (1), which becomes ‘

2

.0 2] 2 . 1
imra+ 5 atlal grifdre?rg,=0. 3)

The damping term can also be written as a convolu-
tion. °1

The particular form of the damping rate ¥, depends on
the physical situation where Eq. (2) applies. We men-
tion:

(i) Collisional damping, where the damping does
not depend on wave number; y,=const=¢, and ¢ is
a small positive number.

(ii) Landau damping, on a Maxwellian electron dis-
tribution, of Langmuir waves. Inthe dimensionless
units of Ref. 2,

Y, =(2771/2) %3 exp(- 3672 - 2) . (4a)

We do not use this damping in our computations be-
cause the form (4a) is too complicated for analytical
results, and moreover not valid for large . Instead,

we use power-~law damping, of the form
b
ve=€lk |, (4b)

where the exponent b is real and nonnegative, but not
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necessarily an integer. Such a damping arises in the
Korteweg—de Vries equation for ion acoustic waves,
where b =1, and for water waves with damping in a
boundary layer,!! where 5=0.5. We obtain Eq. (4b) for
Langmuir waves when the electron distribution has a
tail proportional to »~**!. Here, we do not refer to any
particular physical situation, but take Eq. (4b) as our
model damping; this damping allows ananalytic estimate
of the properties of a soliton for large times.

For exponent b an even integer, the damping term in
(3) reduces to ie( - )*/2 (3/8x)?, so that for b=2 the
damping term can be inserted in Eq. (3) by changing the
coefficient of (3/8x)% from unity to (1 —i€). Collisional
damping is obtained for »=0. For b+# 0, the higher wave
numbers are damped more heavily than the lower ones.

The invariance of (1) under the scaling transforma-
tion'! x" =ax, q{x)=aq (x') (where @ is an arbitrary con-
stant), shows that a solution of (1), without damping,
can be written as

qlx,t)=V2K expli8(x, )] f(Kx, ) . (52)

In particular, the soliton solution is

g, t)=V2 _Kexpliolx,t)] . (5b)

cosh[K (x —vt)]

Here, K is a parameter proportional to the amplitude
and inverse width of the soliton. In Eq. {5b), v is the
velocity, independent of K, and 6(x,?) is the phase,
given by 8=vx/2~ (v*/4-K%)t. The Fourier transform
of the soliton (5b) (Ref. 15, Sec. 2.985) is

) = expli¢ (& 2)]
ax V2 cosh[n(k - v/2)/(2K)] ’

where only the phase ¢{k,t)=(v2/4+ K%~ ko)t is time de-
pendent.

(5¢)

The first three invariants of the nonlinear Schrodinger
equation are

Nz](g!zdxzznf\q, fdk , (6a)
PEf(q :‘i* g g—z)dxsz(zﬂjdkqu,]z . (6b)
IEI( -%% 2--;-|q|4)dx . (6c)

Here and throughout the paper the integrations run over
the entire real axis, When ¢(x,#) is interpreted as a
particle probability amplitude, as in quantum mechan-
ics, the invariant N expresses conservation of particles,
P conservation of momentum, proportional to 2, and [
conservation of kinetic energy, proportional to kz, plus
potential energy, proportional to — lql%. The values of
the invariants for the soliton, Eq. (5b), are N=4K,
P=Nv, I=~(0?/4-K?/3)N.

When damping is introduced, N, P, and I are no longer
invariant, but change in time. We find, for N

-N=27 dk27,|q,, ]2

(6a”)

»

where the dot denotes the time derivative d/df ; and

-P-2nf[dr 2y, |q, X2k , (6b”)
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TABLE I. Damping integral R,(v’)
[Eq. (7¢)] for power law damping
(Ref. 15). The function ¢(b) is the
Riemann zeta function.

Bylv") =2
Bv)=@n2-7) +prtia+ ..
By(v")=2/3+p'%/2,
B4(0)=0,69783 .

B,(0)=14/15 .

B,(0) = [4(b +1)/7°1(1 - 2"D) £ (b).

“i-znfarieniela P~ Rella ol o . (6e)

Equation (6a’ ) can be interpreted as the removal of
quanta; then, Egs. (6b”), and (6c’) give the change in
total momentum and energy corresponding to that quan-
tum. Even though N, P, and ] are no longer invariant
when damping is introduced, we will refer to Eqs. (6)
as invariants or conservation laws.

How does the soliton of Eq. (5b) change on introduction
of damping? First consider the solution (5a), with ve-
locity v=86/82=0. If f(Kx,?) corresponds to a solution
of Eq. (1), it is reasonable to assume that only the pa-
rameter K depends to order ¢ on time, but that the shape

f(Kx,t), expressing an equilibrium between dispersion

and nonlinearlity, depends to some higher order on
time; we write f=7(Kx ;).

The time change of K must be consistent with the con-
servation laws, in particular with Eq. (6a’). Calcu-
lating the Fourier transform f,(#) of (5a), introducing
k' =k/K, and substituting this in (6a’) we find

(d/dt)(K™®) =ebBy(f) , (7a)
where
B,(f)= nfdk' e 1. ®

For fixed b, the coefficient B,(f) is a functional of the
Fourier transform f,, (¢}, or equivalently of the shape

of the solution f(Kx ;t). If this shape does not change,
B is constant in time. Conversely, when B changes in
time we know that the shape of the soliton changes (as

found in Sec. III).

1* . (7b)

Not only the shape, but also the initial velocity in-
fluences the coefficient B. Introducing the Fourier
transform (5¢) of a soliton with nonzero initial velocity
v in Eq. (6a’) yields Eq. (7a), with B,(f) replaced by

r_T dr'1e’1®

Byl )—?J' cosh?[(¢" -v"/2)n/2] °
Here, v'(t)=v(t)/K(t) can change in time, since K and v
depend on time. As both k1% and cosh®(kn/2) are even
ink, B,(') is a quadratic function of v’ for small »’.
Consequently, Bb(v') changes little in time when the ini-
tial velocity is small enough, since only the terms of B
quadratic in v’ change in time. Values of B,(v') for var-
ious b and v’ are given in Table I.

(7c)

When B is constant, we can integrate Eq. (7a) to find
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K@) =Ko/(1+evt)t/? | (8a)
with K, =K(0), and the damping coefficient v
v=bK}B, . (8b)

In the limit of collisional damping, b -0, we recover
exponential decay, K(t)- K,exp(— eBgyt). The form of
the time dependence in Eq. (8a) is the same as found!!
for this quantity in the Korteweg~de Vries equation, but
the coefficient, which depends on the functional form,

is different. Moreover, we have the free parameter
v’, which is absent in the Korteweg~de Vries equation.
The damping coefficient of Eq. (8b) is compared to the
computational result in Sec. III.

For Landau damping the integral (6a") can be evalu-
ated approximately2 with a saddle point method. For
our purposes, however, it is sufficient to estimate

=0 for k<ky and y,=c, for k>ky, where ky and ¢ are
constants of order unity. A soliton with initially large
amplitude and inverse width K is damped strongly as
long as K > nk,, but when K falls below this value the
damping disappears rapidly. (Landau damping is com-
pared to power law damping in Fig. 6.)

Having found the time dependence of the soliton ampli-
tude and inverse width X, we now turn to the effect of
damping on the velocity. It is clear from the symmetry
of Eq. (3) for space reflections x - — x that a soliton ini-
tially at rest, v(0)=0, stays at rest throughout the
damping. A soliton with initially positive velocity, how-
ever, decreases its speed if the damping increases with
wavenumber. This is because the velocity determines
the position £, =v/2 in k space of the maximum of the
spectrum lg,12. The spectrum itself is symmetric
around k,. Since the damping is larger for values k&,
+1%"| than for &, - 12’l, where |%’l is the distance to
k,, more of the spectrum disappears at larger wave-
numbers; this shifts the maximum £, to lower wave-
numbers, and consequently, the velocity decreases.

The time dependence of the velocity can be estimated
from Eq. (6b') for P. We rewrite this equation by put-
ting k= (¢ —v/2)+v/2, and use P=ovN + N and Eq. (6a)
to find

Ni):—81rfdky,,(k—v/2)]q,|2 . (9)

The function (¢ ~v/2)1 ¢, |? is antisymmetric in its argu-
ment, and the integral vanishes when 7, is independent
of wavenumber, i.e., for collisional damping where
b=0.

For wavelength-dependent damping, b #0, the absolute
values in 7,=e€l%!® preclude the convenient calculation
of Eq. (9) for arbitrary 5. However, when b is even,
the absolute values in y, are immaterial. For b =2,
for example, we again split % in (k- »/2) and v/2 and
insert this in ¥, = €k®. The integration in Eq. (9) an-
nihilates the terms of ¥, even in (&v/2), and we obtain

Ni =—8nevfdr(k - v/28 | q,|? . (10)
When the initial velocity is small, we can neglect v in

the integral, and compare Eqs. (10) and (6), which leads
to
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No=2uN | (11)
whence
v(t) = vo[N() /N (12)

[v, denotes the initial velocity, N, is the initial value
N(0).]

The position of the soliton maximum x,, which can
easily be compared to the numerical results, follows by
integrating Eq. (12) once more. Using the explicit time
dependence of Eq. (8) yields

() =(vo/€v) In(1 + evt) . (13)

It remains to be seen whether the third conservation
law, Eq. (6c’) is satisfied for our approximate solution.
This is, of course, not sufficient to make the approxi-
mate solution an exact one (for an exact solution we
must use all conservation laws, not only three, or
go back to the original equation), but makes it more
likely that the approximate solution is reasonable. The
Fourier transform of |gl%; is

(lg]%g)y = (K*+K*+1*/4 - ko) g4 (14)

(Ref. 15, Sec. 3.985.3). Inserting this in Eq. (6¢”)
cancels the first term. Using 1==4K*K +v®« K+ 20K
cancels the K2 term from Eq. (14) when Eq. (6a’) for 4K
is invoked. Transposing v%K to the other side, using
Eq. (6a) once more, and combining terms finally yields
2v times Eq. (9b). Thus, the first three conservation
laws, Eq. (6"), can be satisifed by suitable choices of
K(#) and v(#) in the soliton functional form of Eq. (5).
We also note that the integral [Iqldx, which is propor-
tional to the number of solitons® that can evolve from a
particular initial condition g(x,#=0), is independent of
K forasoliton, Eq. (5); thus, the number of solitons
does not change when damping is included.

Throughout this discussion we have tacitly assumed
that € is positive, i.e., damping rather than growth.
However, Eq. (3) is invariant under the complex conju-
gation when in addition ¢ and € change sign. Thus, our
results are also valid for a wavelength-dependent
growth, as long as the use of Eqs. (5) and (6) remains
justified.

l1l. COMPARISON TO NUMERICAL SOLUTION

We now compare the time evolution of a soliton with
power-law damping in Eq. (3) to the analytical predic~
tion of scale invariance, viz., (i) decrease of Nas a
power law with exponent 1/b, Eq. (8a), and (ii) sech-
shaped soliton functional form, or numerical value of
the damping coefficient v [Eq. (8b), with B, from Eq.
(7b)]. The numerical results were obtained by solving
the Fourier transformed Eq. (3). A system of length
L is considered with discrete wavenumbers k2= 2mm/L
where m is an integer. The linear terms on the left of
this equation are integrated exactly and increments due
to the nonlinear terms are applied using an implicit
method with iterations. Modes corresponding to —m,,
=m =my,, are retained in the computations. The con-
volution sums required in the nonlinear terms are com-
puted by transforming back to x space after the addition
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FIG. 1. (a) Evolution of a damped soliton, Shown is |q{x, #!°?

versus x for times £=0, 2, 4, and 6. Initial soliton parameters
are K=2, v=0; damping parameters are € =0,2, and b=2. (b)
Stationary shape of the damped soliton. Shows is | ¢{2) | ¥/K?,
with z =K(f)x, for damping exponent =2, The solid line is the
initial sech shape. The dotted line shows the same data as the
previous figure for £=2, 4, and 6, on the same curve. The
dashed line is the shape for larger damping € =0, 4,

of zero modes to eliminate the periodicity in & space.
All computations are carried out in # space and repre-
sentation in v space is used only in evaluating convolu-
tions or for diagnostic purposes.

The initial parameter K was arbitrarily chosen as
K=2 in all computations without loss of generality,!
leaving the damping strength €, the damping exponent
b, and the initial velocity as parameters.

Figure 1(a) shows the time evolution of a soliton with
initial velocity v =0 subject to power-law damping with
parameters € =0.2 and b=2. The soliton shape seems
rather well preserved in time, and the maximum ampli-
tude 2K? decreases while the width K~! increases. We
see no evidence of outgoing waves but the soliton re-
mains localized. The area under the soliton [ lgl2dx=N
decreases in time.

The functional forms of the soliton at {=0, and at

t =2, 4, and 6, are compared in Fig. 1(b) by plotting
lq13/K2(t) versus the argument Z=K(t)x. For small
damping, €=0.2, the shapes fall for all times on the
dotted curve. Thus, the shape is indeed independent of
time, but lower than the initial sech? form, For larger
€=0.4, the invariant shape, given by the dashed curve,
is also wider than at £ =0.

The time dependence of N for this same case b=2 is
presented in Fig. 2. Referring to Eq. (7a), we show
[K(t)/K,]"® which should be linear in time. We display
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two measures for K, viz., (i) the integral [!q¢|%dx=4K,
in the solid curve, and (ii) the maximum of the soliton
lql,zn = 2K*? (broken curve). These curves should coincide
if the soliton kept its original sech shape. For small
damping, €=0.2, these lines indeed coincide. How-
ever, for larger damping, €=0.4, the slopes of the lines
are different. This difference indicates that the soliton
has a lower amplitude and is slightly wider than expected
from the sech form. Moreover, the decrease in N is
slower at later times than at earlier times. This slower
decrease is consistent with the widening of the soliton.
Wider solitons in x space have narrower spectra in %
space, thus lowering the integral for B, Eq. (7b). The
numerical value in the computation of B, is slightly low-
er than the theoretical value B,(0)=2/3, the difference
between them increasing damping strength € [see Fig.
3(b)]. However, even for the rather large value €=0.4
for the damping strength, the concept of a soliton decay-
ing as assumed in Sec. II is quantitatively valid to with-
in 10%. The evolution of a damped soliton for b =2 is
reconsidered in Sec. IV,

For other values of b the soliton form changes, and so
does the damping coefficient. Figure 3 compares the
instantaneous damping coefficient v, as a function of time
[cf. Eqgs. (7a) and (8b)],

Mg AN
€

pr (15)

vt)=
to the theoretical value v, for the integer values of b=1,
2, 3, 4. [The time dependence of N for collisional
damping (b =0), of course, follows the predicted expo-
nential decay N(¢) =N, exp(— 2¢t) very well, since the de-
cay constant 2¢ does not depend on the functional form
of the soliton.] We have chosen the damping strength ¢
as a function of the damping exponent b such that the
initial change in N, the right-hand side of Eq. (7a), is
about the same for all 6. With this € we have, in some
sense, corresponding strength for the different values
of the damping exponent.

When b =1, the damping coefficient is slowly increas-
ing from the theoretical value for small times, but de-

[
/€204 -
« 10 €=05,7
o V y A4-€=03
z DIy B
g /// o _F
> y P
‘g’ / /N # N
- 7 7 e-02
5 2 : s
_ 7 |
Y
y/
| ! | | ; 1
0 | 2 3 4 5 &

FIG. 2. Soliton scale factor K(t) versus time for power-law
damping with damping exponent b =2, and various values of
damping strength €. The solid line is [K(0)/K(#)])* based on N,
the broken line based on q,2". Soliton parameters are K =2, and
v =0,
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FIG. 3. The computed damping coefficient v () [Eq. (15)]
versus time for different . The horizontal line at unity is vy,
from Eq. (8b). The broken curve is for the smaller €, the
solid curve for the larger €, Parameters are: (a) b=1, €
=0.3, and€=0.6, (b) b=2, €=0.2, and€=0.4, (c) b=3,
€=0,1, and€=0,2, (d) b=4, €=0.035, and € =0, 07.

creases later to deviate from v,y up to 10% when €=0.3,
and up to 40% when €=0.6, as shown in Fig. 3(a). For
b=2, Fig. 3(b), the damping coefficient for ¢=0.2 and
0.4 is almost constant, but slightly lower than v,,, as
mentioned earlier. The damping coefficient for b =3,
Fig. 3(c), decreases rapidly from v,, to reach a mini-
mum of 0.65 of v,, for €=0.2, but then increases while
oscillating. The case b=4, given in Fig. 3(d), reaches
an even lower minimum, but otherwise behaves similarly
to the previous one. When b =3 or b =4, the damping co-
efficient appears to reach a saturation value slightly
lower than v,, for later times.

How do we explain these deviations from expected be-
havior? First consider the case b =2, which corre-
sponds fairly closely to theory. Apartfrom #=0, to
which we return in a moment, v, stays constant, albeit
smaller than the theoretical value v,,. Thus, the de-
crease in N is given by the power law derived from sim-
ilarity arguments, but the functional form of the soliton
has changed slightly to account for the change in damp-
ing coefficient. It is reasonable to assume that the
damping, proportional to k%, preferentially depletes
the tail of the spectrum. Then, the damping coefficient
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decreases as is clear from Eq. (6a). This damped sol-
iton is slightly wider in x space with the same ampli-
tude, or slightly lower, with the same width, thana
pure sech-shaped soliton.

The assumption that a soliton keeps its functional
form is apparently not satisfied near { =0. The steep
decline in v(¢) for times smaller than £=0.3 indicates
that [dk v, lg, 1% decreases rapidly in time; indeed, the
tail of the spectrum is cut off by the damping, and the
nonlinearity has not had time to replenish it; thus, little
spectrum is left to damp. After this initial stage the
soliton for b =2 seems to be in a self-similar equilibri-
um, but for b+ 2 no such equilibrium is apparent. For
b =1, the damping coefficient v, is larger but fairly
close to vy, and decreases as time goes on. For b =3
and b =4, the damping coefficient seems to return to the
theoretical value, and at least for the smaller damping,
€=0.1and €=0.35, v, oscillates around an equilibrium
near v,.

The shape of a damping soliton as a function of time
is shown in Fig. 4(a) when the damping exponent 5 =1.
At t=2, the soliton shape is more peaked than the initial
sech-form. At ‘=4 the peak has grown, and additional
tails have appeared.

The case b =3 is displayed in Fig. 4(b). The maxi-
mum of the soliton at £ =2 is now lower than the initial
sech shape, while this maximum at /=4 is in between
these two values. No tails are visible. The changing
shape of the soliton in the cases =1 and b =3 contrasts

1
A

T
o M
"
—-074

W
ond

2
/K?
T

ol

FIG. 4. Shape of the damped soliton. Shown is |g(z;# 1 2/K2,
with z=K(f)x, and K =N/4 from the computation. Parameters
are (a) €=0.6, b=1. (b) €=0.2, b=3,
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with the stationary shape of the soliton for 5 =2, shown
in Fig. 1(b), and qualitatively explains the change in
time of the damping rate.

Another feature seems to be that the difference be-
tween v, and v,, increases as time goes on for b =1, the
difference decreases for b=3 and b =4 in time, while
lv,- vyl remains approximately constant for b=2. We
explain the b dependence of lv,-v,,| by the properties
of the damping term under the scaling!! transformation
t'=a%, x" =ax, ¢'(x",t')=a'q(x,t). This transformation
multiplies Eq. (1) with an overall factor . However,
the damping term v,g, scales as a®? relative to the other
terms in Eq. (3) or (2) (as v,=a%,., where k' =a"'%).
Thus, the relative size of the damping for b =1 increases
as the scaling factor a, which can be taken proportional
to N(¢) or to K(¢), decreases in time. The relative size
of the damping terms stays constant when 5 =2, and de-
creases for b greater than two. Consequently, the in-
fluence of the damping on the form of the soliton be -
comes larger for b =1, but diminishes for »=3 and » =4.

Naturally, the smaller ¢ the smaller the disagreement
between analytical and numerical results. We note that
the differences between v, and v,y for b=2 and b =3 typ-
ically increase by a factor of four when ¢ is increased
by a factor of two. We conclude that, apart from an
initial transient, the soliton behaves substantially as
predicted when € is chosen small enough, However,
“small enough” means € of the order 0.01 for b =4,
around 0.03 for 4=3, while only for »=2 can we have
a ““small enough” ¢ larger than 0.2. The given values
are illustrative for a soliton with parameter K=2: For
solitons with other parameters, the illustrative €’s
change by a factor (K/2)*® when a solition with param-
eter K is damped.

It is of interest to determine the functional form of a
soliton that remains self-similar from £ =0 to all later
times; this is only possible for b =2, since only then
does the damping term not change in time relative to the
other terms. We defer this discussion to Sec. IV.

The soliton in all previous computations had an initial
velocity of zero. This velocity remains zero as Eq. (3)

T T T 1 T T
K=2
ol V=i e
€202 ,/;/0
b=2 //3’/
£ 5//
3 0/
1= _
/ —-e-= Xplt)
—o— eq(I3)
% T 5 a4 5 s

FIG. 5. Position of the maximum x,, versus time of the damped
soliton with K =2, v=1, €=0,2, and damping exponent b =2,

The straight line is the position of an undamped soliton with

the same initial condtions.
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N(t) / N (O)

FIG. 6. N versus time for Landau damping (Ld, open squares),
and power-law damping. The initial parameters are K =3.5

for Landau damping, and K =2, € =0, 2 for power-law damping.
The velocity v =0 in all cases.

is symmetric in x. For collisional damping the velocity
does not change even when v+#0. We now briefly con-
sider a moving soliton. In Fig. 5 we show the position
x, of the soliton maximum by the broken line when the
damping exponent b =2, i.e., the case that follows the
analytic approximations best. The straight line is the
position in the undamped case, x, =vf with v=1. We
observe fair agreement with the prediction of Eq. (13),
given by the solid curve. When the initial velocity is
not equal to zero, the damping is indeed stronger than
when v =0 (cf. Table I), but as v decreases rapidly in
time the damping coefficient quickly regains its value
for v =0,

The other damping exponents show qualitatively sim-
ilar behavior, but as even the damping of N for v =0
does not follow our expectations very well for b# 2, we
have not made a quantitative comparison between the
observed and expected positions of the maximum in those
cases. We just note that x,(¢) for b=1 is very well fitted
by the empirical relation x, () = vt N'/3(t).

After developing some understanding of the analytical-
ly somewhat tractable case of power-law damping we
conclude with a soliton subject to Landau damping. In
Fig. 6 the time evolution of N(#) with Landau damping,
the curve marked Ld, is compared to this quantity,
when power-law damping with =0, b=2, and b=4 ap-
plies. We have again chosen parameters such that the
initial damping is about the same in all computations.
We see than |N I a is large initially, compared with its
final value, which is almost zero. The decrease in N
for larger times is more rapid with power-law damping
than with Landau damping.

In this section we have seen that a soliton in the non-
linear Schrddinger equation with damping remains local-
ized, but changes shape in the course of time. Conse-
quently, the time development of the invariant N{t), or
the parameter K(¢), is different from the predictions,
but of the correct order of magnitude. When the damp-
ing is proportional to E?, the functional form of the soli-
ton remains invariant. This case is studied more close-
ly in the next section.
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IV. SELF-SIMILAR SOLITON FORM FOR b =2

In this section we revert to the problem of finding a
soliton that changes only the parameter K=K(¢) when
damping is introduced, but does not change its functional
form. Such a soliton can exist only for =2, because
only in that case does the magnitude of the damping
term, when compared to the other terms in Eq. (3), re-
main constant in time (see the discussion in Sec. III).
For convenience, we assume that the velocity of the
soliton is zero, and that its maximum is at x =0,

When b=2, Eq. (3) becomes

dq 2 2
tgﬂl —ie)—%+|q] q=0 (16)
We assume a solution of the form
qlx,t; €)=V2K(t; €)f(z; ) expliblz,t; €)] . (17)

Here z(x,?; €)=K(¢; €) x, and f and 6 are real functions
of the indicated variables. In the limit € -0 the func-
tions f and 8 must reduce to the ones for an undamped
soliton, f(z; 0) =sech(z) and &z,¢; 0) =K% [compare Eq.
(5b)}. Substitution of Eq. (17) in Eq. (16) and separation
of the real and imaginary parts yields

—K/K*28,f = 8/K?f+fop+ 213
- 0%f+e(20,f,+6,f)=0,
K/KYf+2f)+(26,f,+ 040 ) = €fog + €627=0 ,

where the dot denotes 9/3¢ and the subscript z stands for
8/8z. From Eq. (18b) we see that §, can be independent
of time, if K/K® is independent of time. In view of Eq.
(7a), we write

K/K®=—€Bl(e) ,

(18a)
(18b)

(19)

where the constant B=B(¢) is to be determined. When
6, is independent of time, 0 =0, and it follows that g is
independent of z.

Then, Eq. (18a) shows that - §/K2, the normalized
nonlinear frequency shift, is constant. We choose this
constant — 1, as in the undamped case. Thus, #(z,!; €)
can be written as

t
Ole,t; €)= egle; €)+ [ KNt (20)
The z-dependent part of the phase must be chosen pro-
portional to €, because without damping the phase K%
of a soliton with velocity » =0 is independent of x or z.
Using Eqs. (18b)—(20) we find two equations for the shape
f{z; €) and the spatial dependence of the phase g(z; ¢)

(-1+€®B)f+(L+e€) f,, +2f°
+€¥[Bzlg, f+f)-g2(1+€)f]=
E[— B(f+zfg)+2ggf:+gttf_fu+€zgff]=

without any time dependence. This nonlinear eigenvalue
problem is an exact consequence of the time-dependent
Egs. (16) and (17), showing that the assumption of a
stationary solution can be satisfied exactly. The solu-
tion, however, is clearly very complicated. Rather
than finding a full solution we now show that a solution
exists to order €?, and calculate the damping rate B(e)

(21a)
(21b)
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to this order for comparison with the numerical results
shown in Fig. 3(b).

The undamped soliton following from Eq. (21) is, of
course,

fo=flz; 0)=sechz . (22)

To first order in € the shape is also given by Eq. (22)
because the correction terms in Eq. (21a) are of order
€? or higher. Thus, the assumption of invariant soliton
shape is justified to first order in €.

The damping rate is calculated by multiplying Eq.
(21b) by f, integrating, and solving for B

B(e) =f(2fffdz+2e?[fzgfdz)/ fiz |

Inserting f,=sech z yields B=2/3, correct to first order
in €. Alternatively, B can easily be found to lowest
order in € without the explicit solution, because Eq.
(23a) only contains integrals over f(z}. We put € =0;
multiplying Eq. (21a) by f/2 and integration over z
yields

(freaes rids)= [tz .

Multiplying Eq. (21a) by 2f,, integrating [compare Eq.
(25a) with €=0] and integrating once more over z gives

(23a)

(23b)

ff dz - ffzdz ff4dz . (23¢)
Combination of Eqgs. (23a)-(c) also leads to
B(0)=2/3 . (23d)

Calculation of the second order correction to the func-
tional form and damping rate demands the first order
phase g from Eq. (21b). Neglecting the ¢ —term, mul-
tiplying by f,, integrating, and using B =3 yields

ge=-stanhz +2/3 , (24a)
(24b)

The first term of Eq. (24) can be included in f as a com-
plex exponent. To first order, Eq. (17) becomes (com-
pare Ref. 16)

t
g(x,t; €)=V 2K(sech z)l‘z“/aexp(iezz/BJrif K%dt) .
: 0

(24c)
The soliton to second order in € can be found by mul-
tiplying Eq. (21a) by 2f, and integrating. We find

g=%1n(sech z)+2%/6 .

(1+e)f2+vif; 2)=0, (25a)
where

V(f;2)=f*=(1-2€%/3)f2+ 5V(f; 2) , (25b)
and '

GV(f;Z)=2fo,dz+const . (25¢)

Here, X=X(f; z) stands for the term in the brackets of
Eq. (21a). The integration in Eq. (25c) is the indefinite
integral; the constant is chosen such that 5V =0 when

f=0.

The indefinite integration with the unknown function
fz) leads to seemingly dissipative terms such as Bsz
in the integrand. This would preclude writing 6V as a
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potential solely dependent on f as needed for the calcula-
tion of f with Eq. (25a). However, 5V need only be cal-
culated to lowest order in €; thus, we can use f, = sechz
instead of the unknown function f(z) in the integration.
The difference between 7, and f is of order ¢, and be-
cause these functions go to zero fast enough as z - «,
the difference between integrals of these functions is
also of order ¢ [see Fig. 1(b); f, is the solid curve, f
is the dotted or broken curve].

This procedure leads to (cf. Ref. 15, Sec. 2.447):
8V =[(= 32% + 2z tanh z — sech®z + 3)sech?®z — z tanh 2
-1In(sech z) +In2]/9 . (26)

The constant 1n 2 is the limit of z tanh z +1n (sech z) ;
thus 6V —~0 as f=0. The desired form 5V(f) is found,
correct to first order in €, by substituting f for sech

z, (1-f®Y2for tanh z =—f,/f, and arcsech (f) for z.

It is now clear that V(f; z)= V(f) fulfills the require-
ments for a soliton solution, viz. (i) at z=0, f,=0 and
V(f)=0, and (ii) at infinity, f,=0=/, together with V=0
=9V/8f. Thus, a soliton-type solution exists to second
order in ¢, and its functional form can, in principle,
be found by integration of Eq. (25a), with Eq. (26).

Fortunately, it is not necessary to find the explicit
form of this solution f{z) for the calculation of the damp-
ing rate, because Eq. (23a) for B only contains integrals
over f{z). Performing the steps that lead to Eq. (23d)
but without putting € =0, using [f2dz = 2+ O(e?) when-
ever it multiplies an O(e?) quantity, and gathering terms
of order €* gives

Ble)=%[1- ¢ - %fodz +f5de

—%ffzgde)] +0(e?) . (27a)

Calculation of the integrals in (27a) to lowest order in
€ yields

fodz - (26— 12/2)/27 , (27b)
féde:—fzaéV/azdz:(nz/tl—20)/2'7 , (27¢)
ffzgfdz = (n2/4-2)/27 , (27d)

using Ref. 15, Sec. 3.527. In addition we need I = [x?
xsech? xdx. With (8/8a)? of [ sech®axdx =2/a, we find
I=7%/9-2/3. The final result is

Ble)=%[1-€®(15+72/8)/27] = 2(1-0.6¢€?%) . (28)

Comparing Eq. (28) with the data displayed in Fig. 3(b)
we find excellent agreement: for €=0.2, B(0.2)/B(0)
~(.976 from Eq. (28), versus 0.98 from Fig. 3(b);
for €=0.4, we find B(0.5)/B(0)~0.904 versus 0. 89.

V. CONCLUSION

We have made a detailed comparison of numerical
soliton solutions of the nonlinear Schriddinger equation
with damping, with the analytical assumption that soli -
tons keep their shape, while damping as predicted by
the first few conservation laws.

We have investigated different damping laws, all of
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the form v,=€lkI®. A standing damped soliton with
damping exponent b =1 develops small tails, but solitons
with damping exponent » = 2 remain localized. For the
damping exponent b # 2 the soliton form changes slightly,
but this change has a sizable influence on the damping
coefficient, defined by Eq. (7a). In contrast, when h=2
the soliton shape and the damping coefficient are con-
stant in time. This qualitative difference between b # 2
and b =2 is explained with the scaling properties of the
nonlinear Schrédinger equation compared to its damping
term.

The velocity of a soliton for b =2 decreases in agree-
ment with the second conservation law; we have given a
qualitative explanation of this decrease, valid for » =0.

For the damping exponent b = 2 we have found a formu-
la for the stationary shape of the damped soliton, cor-
rect to second order in ¢, and calculated the damping
rate to this order. This damping rate shows excellent
agreement with the numerical solution.

We add a note of caution: These results cannot be
taken over automatically in other nonlinear wave equa-
tions. For instance, solitons in the Korteweg—de Vries
equation do not behave as nicely as the solitons consid-
ered here. !’

In the Korteweg-de Vries equation, 9q/8¢+¢qdq/ox
+8%/8x*=0, the integral | ¢ dz is conserved in addition
to Eq. (6a’); the damping soliton decreases amplitude,
velocity, and inverse width according to Eq. (6a’), but
also leaves a wake which accounts for the conservation
of [ gdx. The wake has a small amplitude, and be-
haves almost linearly, i.e., disperses into the negative
direction.

Initial conditions of other than stationary soliton
form*® in the nonlinear Schrddinger equation behave in
a more complicated manner, but we have not systemat-
ically investigated these.
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