fact that the Child—Langmuir law is obeyed supports
the validity of our method and is consistent with tur-
bulence theory' which suggests that anomalous behavior
occurs only when the drift velocity exceeds the thermal
velocity 1.3 times.

These results suggest that the resonance-cone tech-
nique is a powerful diagnostic tool for measuring both
the electron temperature and drift velocity when the
electron-plasma frequency is known and is much larger
than the electron gyrofrequency.

In future experiments we intend to check the validity
of this technique in the turbulent regime when V,> 1.3 V,.

We would like to thank Dr. L. R. O. Storey for many
useful discussions and for the original idea from which
this study grew.
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The expansion of an electron bunch is solved exactly in Lagrangian coordinates, and the result is compared to

a self-similar solution.

One of the simplest plasma physics phenomena is the
one-dimensional expansion due to self-electric fields of

an initially localized electron bunch. This situation is
not only of theoretical interest; for example, deeply
modulated electron beams can be considered as a train
of these bunches. The modulation depth of the beam
deteriorates when the bunches have widened beyond the
original inter-bunch distance, and this process can be
a limit to the beam current.

The electron bunches are assumed to be created at
rest in a magnetic field strong enough to make the
dynamics one-dimensional. The nonlinear fluid equa-
tions for the electrons (ions are absent, there is no
charge neutralization) can be treated in various ways.
One way is to use Lagrangian coordinates; this approach
has been applied to large-amplitude electron plasma
oscillations,'™ but apparently not yet to non-neutral
charge bunches., Another way is to attempt a self-simi-
lar solution.® The two calculations give a simple and
interesting example of the utility and limits of self-simi-
lar solutions. ®

The equations for a one-dimensional single species
cold electron fluid are the continuity equation

ot o0x

on 4 3(nv) _0. (12)

the momentum equation

ap . ap 96
w_  w_ ¢ 1b
FYr P P (1b)
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and Poisson’s equation

3% en

EX— = - _€: . (IC)
Here, n(x,t) and p(x, ¢) are the electron density and
momentum, ¢ is the electron charge, ¢ is the electric
potential, and ¢, is the permittivity of vacuum. In ad-
dition, when considering a charge bunch the charge/area
is constant,

ef n(x, t)dx = const . (2)

These equations are linearized in Lagrangian coordinates
7 and § 7=, and

x:£+f1d'r'v(£,r'). (3)

Initially, £ is the same as x, but as the system evolves
the coordinate £ remains fixed in the fluid, and the co-
ordinate x must be found by backtracking the fluid mo-
tion. The convective derivative following the fluid is

i d 2

+

U T e @

and the space element becomes simply dé= (9x/0&)dx.
The continuity equation expresses conservation of mass
between two neighboring positions £ and £+ d&; there-
fore,

T v T b
n(é,r)zn.,(&)(Hf dr —9%—&—2(17') , (5)
0
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where ny(£) is the initial electron density. The mo-
mentum equation (1b) becomes
BED _op(s, 1), (6)
oT

where the electric field E(= -3¢/9x) is localized in the
fluid,

3E(&, T)

PP =0. (73.)

To derive this equation algebraically, one can use Eq.
(1c) supplemented by the time derivative of (1c¢), (1a),
and the spatial integration; alternatively, one canrealize
that the field at £ is given by the total charge to the left
of & which is invariant. In terms of the initial charge
density, the field is given by Poisson’s equation

dE(£) - eng(g) ('b)
o0& €&

The dynamical equations are now linear, and can be
solved exactly once the initial conditions are given.

First, consider a charge bunch initially at rest with-
out an external field. The appropriate initial condition
is

n(E)=NF(&/s)/s, (8a)

where N is the number of particles per unit area, s
measures the width of the bunch, and F =F(y) gives
the functional form of the bunch with integral normal-
ized to unity. An example is F =7"1/2exp(~y?). The
initial electric field E, vanishes in the center of the
bunch, and is, therefore, given by

E(p=22 g( f) (8b)

0

where

y
g(y)=f F(y)dy .
0
E (£) has width s, and increases monotonically with
£ from -Ne/2e¢, to + Ne/2¢,.

The momentum now follows easily from Eq. (6) and

(8):
pg, =% JZT g(§>- (92)

s

The position in Eulerian coordinate then becomes for
nonrelativistic velocities v=p/m (m is the electron

mass)
eNT2 g(—£—> (9b)

x= +
¢ 2me, S

The exact formula for the density, Eq. (5), can now
be written down. The density is an explicit function of
€, but an explicit result in terms of x for arbitrary in-
itial shapes must be found numerically from the gen-
erally transcendental relation (9b).

The self-similar solution® for an expanding charge
bunch uses as self-similar variables {=x/#, N(t)

=nt?, V(§)=v/t, and &(¢)=$/¢2. Substitution in Eq.
(1) gives
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dN . d(NV)

~2N - 2¢f —— dC i =0, (10a)
v _dvV e db _

V- 2;-—§+V——E+md_g =0, (10b)

d’s e

= EoN. (10c)

Equation (10a) can be integrated once, to give
(V-2{)N=const. (11)

The bunch is initially symmetric; therefore, V()
=V(-¢t), or V(¢=0)=0, and the constant in Eq. (11)
equals zero. Then,

V=2¢. (12)
Substituting this in Eq. (10b) and integrating gives

(e/m)d =const - &, (13a)
and into Eq. (10c),
N=2em/e? . (13b)

This constant density is obviously an unacceptable solu-
tion for an expanding bunch, because the change density
is not localized, and the total charge is infinite.

It is clear from Eq. (Sb) why the self-similar as-
sumption gives an unacceptable solution. The self-
similar variable is {=x/t%, but (9b) is

t=ft g g(ﬁ); (14)

2¢,m s

the time ¢ cannot be removed from this expression,
except for £=0, or in the limit of large times. In-
deed, for large times the expanding electron bunch
has a large scale length, and the charge density is al-
most constant, in agreement with Eq. (13b) from the
self-similar analysis. Equation (14) is an exceedingly
simple example of an asymptotically self similar
transformation.®

In conclusion, it should be mentioned that the La-
grangian analysis can be extended to two and three
dimensions.” Also temperature, relativistic dyna-
mics, and external electric fields can be included.
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