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Numerical studies of various aspects of two-dimensional Langmuir solitons, are made, viz., (i) instability

and collapse of a planar soliton perturbed in the perpendicular direction, (ii) the effect of an approximate
Landau damping on the collapse, and (iii) the generation and subsequent collapse of planar solitons by an
external pump field. These computations verify the flow of energy from long wavelength pump fields,
through soliton formation and collapse, to shorter wavelengths, where the energy is transferred to the

electrons.

I. INTRODUCTION

The theory of strong, electrostatic, plasma turbu-
lence can be developed conceptually, in terms of an en-
semble of Langmuir solitons.'™ These solitons are
strongly nonlinear wavepackets of electrostatic plasma
oscillations trapped in self-created density depressions
in the background plasma. They are generated by a
source of energy at wavelengths long compared with the
Debye length x,, e.g., an external pump field provided
by a powerful laser or the unstable waves generated by
beam-plasma interaction. Solitons arise spontaneous-
ly, out of the thermal noise, and reach a certain ampli-
tude before they suffer an instability?™'° which leads to
a collapse,! i.e., a shrinkage in their physical dimen-
sions accompanied by a corresponding increase in the
energy density. When the scale-length approaches xp,
strong Landau damping follows and the high-frequency
wave energy is dissipated into particle energy, Without
the pressure exerted by the plasma oscillations the den-
sity depressions cannot be maintained in equilibrium
and the low-frequency energy is radiated as ion sound
waves. Thus, solitons have a finite lifetime in two and
three dimensions and steady state is reached only when
the rates of production and annihilation balance each
other. The growth and decay of solitons provides the
physical mechanism for transferring plasma wave en-
ergy at long wavelengths to short wavelengths® which is
absorbed by wave-particle resonances.

In a previous paper,'! hereafter referred to as (I), a
careful comparison has been made of the excitation,
propagation, and interaction of solitons in one dimen-
sion by two different numerical techniques, viz., (i)
particle simulation and (ii) a fluid code based on Zakha-
rov’s model equations.! Our conclusion from (I) is that
the results from these two codes are in reasonable
agreement provided the effect of electron Landau damp-
ing is suitably included in the fluid code.

In the present paper we employ a two-dimensional
fluid code to conduct a detailed study of:

(a) The instability of a planar soliton to a two-dimen-
sional perturbation and comparison of the growth rate
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with analytical predictions.

{(b) The long time evolution of this instability which
leads to the eventual collapse of the soliton accompanied
by the excitation of ion sound waves.

(c) The generation of solitons from random thermal
fluctuations by an external pump field close to the elec-
tron plasma frequency, and their subsequent collapse.

The situation in two dimensions is notably different
from that in one dimension. Because solitons do not
collapse in one dimension, the soliton lifetime is very
long and equilibrium is achieved by the balance of damp-
ing and growth in each individual soliton. Thus, the
solitons retain their identity in one dimension!! where-
as they are statistical events in two dimensions.

The model equations for Langmuir turbulence used in
this study are Egs. (6) and (7) of (I) which we repeat
here, for convenience, in the same notation and system
of dimensionless units.

V- (i5E/8t+VV-E-NE)=0, (1)
aaN/a/z_VzN:VZ‘EF' (2)

No stationary solutions of Eqs. (1) and (2) in two di-
mensions are known except the planar soliton, which in

each cross section has the one~-dimensional soliton
form,?

E o=[2(1=2%)]Y2K exp[ils vx = 20)]/coshK (x - vt} , (3a)
Q=0v/4-K?%,
E,p=0, (3b)
Ng=~2K2%/cosb®K (x = vf) == | E|2/(1 ~0?) . (3¢)

[Note that the symbol K here is equal to k of (I). ] How-
ever, this solution of Egs. (1) and (2) is unstable to per-
turbations in the y direction, which leads to a collapse
in finite time of the electric energy density |E|? and ion
density N,

Two aspects of this collapse have received theoreti-
cal attention, viz., (i) the linear growth rate y of an
initial perturbation on the soliton as function of the pa-
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rameters K, v, and perturbation wavenumber %,, and
(ii) a possible self-similar solution in the collapse
stage.

Most analytical studies have concentrated on a modi-
fied scalar version of Eq. (1), viz.,
i0E/ot+ 8%E/8x%+ 32E/oy? =NE=0, (4)

where E=E,. When ion inertia is neglected in Eq. (2),
then N=- |E|%. With this additional approximation,
calculations by Zakharov and Rubenchik® and by Yaji-
ma'® on the stability of stationary solitons (v=0) lead to
y2=4riK? (5)

where k, is the perturbation wavenumber in the y di-
rection. These calculations assume that k2 /K<< 1.
When &,/K is small but finite, Degtyarev ef al.” obtain,

y2=4k K1 -k2/4K%)/(1+ pE2/2) , (8)

for a standing soliton (v=0), where 8=11,95 is a com-
bination of integrals over functions connected to Eq.
(3a). This calculation indicates a cutoff in growth rate
when %, approaches 2K. An approximate, but much
simpler version of the calculation leading to (5) and (8),
is as follows. The perturbation 5E(x, {) exp(ik,y) is de-
termined by the first order equations from (4),

[—z8/0t+8%/ox? + | Eg|% = k2] 6E+ | Ey|2(6E+6E*)=0 ,
(7a)

[ia/0t+8%/0x2+ | Ey|2 = k2] BE*+ | Eg|2(6E+GE*)=0.
(o)

From these equations we obtain

i9(0E+ SE *)/at+ [8%/ox%+ | Eg|% = k2] (6E* = 6E) =0 ,
(8a)

i9(6E* = 6E)/0t+[92/0x%+ 8| Ey|% = k2](6E+ SE*)=0.
(8b)

Combining Eqgs. (8a) and (8b) we obtain a fourth-order

partial differential equation for (6E + 5E *),

0%/at?+[8%/ax%+ | Ey|® = k2] [2%/0x?

+3| Eg|2 = k2] (6E+SE*)=0. (9)
Since the original equation, (4), is valid only for
(8 /ax)/k,> 1, we notice that growing solutions depen-

dent on k,, are possible only if the variation of 5E is
determined by

(82/0x%+ | Ey|%)6E ~0 , (10)

thus annihilating the dominant terms in the first bracket
of (9). We conclude that 5E = €| E(x)| exp(ik,y+ /) with
€1, and

y2~ 22| Eo|2(1=3k2/| Ep]®) . (11)

Equation (11) is to be interpreted as valid in the central
region of the soliton. We may therefore replace | E;l 2
by 2K? from (3a) and recover the Degtyarev ef al.” re-
sult, viz., Eq. (6), except for the small correction giv-
en by the denominator.

When the approximation E, <« E, is not made, i.e.,
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we revert to Eq. (1) with N=~ |E|?, Zakharov and Ru-
benchik® obtain for £, <« K

y2=4k2K2{1-[3-1£(3)]} ~0.4k2K? , (12)

where ¢ is the Riemann zeta function. We see that ne-
glecting E, results only in a change in the numerical co-
efficient without affecting the dependence of ¥ on &, and
K.

Finally, Schmidt® has computed the stability of a soli-
ton with arbitrary velocity v <1 including ion inertia and
therefore, utilizing Eq. (2). He obtains

yi=4|k,| K& (1= 0))]2, (13)

in the limit 2> 1>k, However, in the limit » - 0 this
result does not agree with the previous derivations, but
the reason for this discrepancy is not apparent.

Numerical computations described subsequently in
Sec. I approximately confirm the cutoff feature in y as
k, approaches 2K predicted by (6) and (11). The actual
temporal evolution of |E|? is an even function of time
and varies initially as 2. This follows from the sym-
metry properties of Eqs. (1) and (2), viz., invariance
under space reversal and under time reversal with com-
plex conjugation. If all initial conditions also have
these symmetries, then any real function of time or its
Taylor series is a function of 2, Thus, for early times
we observe

|E(0)|2 = |E(0)|2(1+ T2% cosk,y) , (14)
where Iy,

After the linear growth stage, the instability develops
into the collapse stage with large local values for the
amplitudes., Higher order terms in E and N appear in
the equations, so that instead of a completely collapsed
state, stationary and oscillatory solutions are possible
with large amplitudes. 12 However, these corrections
still allow an energy invariant.

Computer solutions of Eqs. (1) and (2), presented in
the next section, indicate a quasi-self-similar solution
for the electrostatic energy in the collapse stage (see
also Refs. 6 and 7). In a self-similar solution, the de-
pendent variable ¢ is of the form

wx, =) , (15)
with the coordinate
x=r(Nt . (16)

Substituting the form (15) for the potential ¢, with E
==VY, and analogously N=7%(¢) in Eq. (1), we find
that for a self-similar solution

FAGE (2 L (17)

From the conservation of total electrostatic energy W
= [ |E1?dxdy we obtain

|E|?ef2| E' ()] 2o (¢ = ) B ()] ® . (18)

For the self-similar ion density v we find, from Eq.

(2),
8u+6(L- VIv+(E- v)2u=4r2vi(v+ |Vex|®) . (19)
The right-hand side depends explicitly on time, through
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the function /. In general, a self similar solution can-
not be found. However, in the limit - ¢’ the right-hand
side goes to zero. Then, we can find a radially sym-

metric solution in arbitrarily scaled coordinates. With
v a function of radius | £| only, we obtain
v=c|t|2+d|t]™, (20)

where the constant d=0, because the integrated ion den-
sity is invariant. Equation (20) predicts ellipses of ar-
bitrary eccentricity for the level lines.

The model equations, (1) and (2), are not invariant
under a scaling'® of the independent and dependent vari-
ables x'=Kx, {'=K", N=K?N', and E=KE'. Here, K
is an arbitrary constant. The choice of the integer »
=1 leaves Eq. (2) invariant, but not Eq. (1), while the
choice k=2 leaves Eq. (1) invariant, but not Eq. (2).
Thus, solitons with different values of the parameter K
can behave qualitatively different, since the relative im-
portance of the time derivative of Egs. (1) and (2) de-
pends on K. Our choice of K around 2 in the following
sections was suggested by the results of (I), obtained
with m,/m;=0.01, where solitons with K larger than 2
are heavily Landau damped.

Il. TWO-DIMENSIONAL INSTABILITY AND
COLLAPSE OF A PLANAR SOLITON

In this section we present numerical solutions of the
collapse of a planar soliton perturbed in the perpendicu-
lar direction. These solutions were obtained using a
two-dimensional algorithm based on the spectral rep-
resentation of Eqs. (1) and (2).%'! Periodic boundary
conditions are used with periodicity lengths L  and L,,
corresponding to a discrete spectrum with k=(2m,/
L)x+(2m,/L,)y, where n, and n, are integers satisfy-
ing the condition (n%+n2)'/2=y,_,.. Most computations
were done with a spatial grid of 3232 points, corre-
sponding to n,,, =10, or 334 modes.

A planar soliton, propagating in the x direction, is
initialized with an electric field amplitude defined by
Eq. (3) with =0, and a perturbed ion density defined by

N=—(2K%/cosh?Kx) (1 + 2€ cosk,v) , (21)

where ¢ is the perturbation parameter. The periodicity
length in the direction of propagation is L, =6 in all so-
lutions presented in this section, so that the soliton is
free from the boundary of the system. The wavelength
of the perturbation is always chosen equal to the peri-
odicity length in the perpendicular direction, i.e., &,
=27/ L,. Table Idefines other relevant parameters of
the various solutions. Note that no initial perturbation
is given to the electric field, or to the derivative of the
ion density aN/9¢. In most cases the soliton is un-
stable; however, for short periodicity lengths in the y
direction, or for small values of K, initially stable so-
litons were observed, as noted in Table I.

We examine separately in subsection A the parameter
dependence of the initial growth rate of the instability
in subsection B, the self-similar character of the solu-
tion in the collapse stage, and in subsection C the ef-
fect of Landau damping on the soliton collapse.

938 Phys. Fluids, Vol. 20, No. 6, June 1977

A. Initial stage of the soliton instability

The initial evolution of the transversely perturbed soli-
ton in run 8 is shown in Fig. 1. At £=0.5 the electro-
static energy, initially unperturbed, is already more
concentrated at the original minimum of the ion den-
sity {(x=v=0). At f=1.0 this concentration is even
more pronounced, with the electrostatic energy maxi-
mum, |E{%, having increased to twice its initial value
at x=9=0, and decreased to 0. 6 of its initial value at
the boundaries y=+8. This condensation of electro-
static energy at x=y=0 is accompanied by a corre-
sponding ion density depletion. The evolution of the
energy density maximum, |E{f)(2 at x=y=0, for the
solution shown in Fig. 1 is represented in Fig. 2(a) in
terms of the increment AlE|% =E(#)|% - |E(0)I%. Note
that after an initial stage (region 1) corresponding to a
rearrangement of the electric field E in the initial ion
density depletion, a|El|% increases with a quadratic
time dependence of the form A|E[2 = E{0)|3I'%/2 (re-
gion 2). This quadratic dependence, represented by a
linear variation in the plot of Fig. 2(a), is maintained
while A|E|Z% increases by approximately an order of
magnitude. Its rate I' remains constant out to ¢ ~ 0.7,
where the relative change in the maximum A|E|2/
lE(O)lf,, reaches 0. 16 and the linearization approxima-
tion is expected to break down.

The maximum of |E|? as a function of v, plotted in
Fig. 2(b) for /=0.5 and f=1, 0 shows that the perturba-
tion retains a dependence of the form cos(k,y) and there-
fore, grows at approximately the same rate T for all
values of y, in agreement with Eq. (14).

The growth rate I is plotted as a function of the per-
turbation wavenumber k, in Fig. 3(a) for a given value
K =2 of the soliton parameter. Note that the growth

TABLE 1. The parameters of the collapsing
planar solitons; L, is the periodicity length in
the y direction, K is the soliton strength param-
eter, v is the soliton group velocity, and € is
the perturbation amplitude. All computations
used a periodicity length in the x direction

L. =6.
Run L, K v € Comments
1 4 2 Q 0.1 stable
2 4.57 2 0 0.1 stable
3 5.82 2 0 0.1
4 8 2 4} 0.1
5 12 2 0 0.1
6 16 2 0 0.025
7 16 2 0 0.05
8 16 2 0 0.1
9 16 1 0 0.1 stable
10 16 4 0 0.1
11 16 2.387 0 0.1
12 16 2 0.6 0.1
13 16 2 0.8 0.1
14 16 2 0.9 0.1
15 32 2 0 0.1
16 64 2 4} 0.1
17 8 2 0 0.1 Landau
damping
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FIG. 1. Theelectrostatic energy
| El2(x,,# and the ion den-
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run 8. The solid lines are the
level lines at 0.5 of the maxi-
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mum, the broken lines at 0.1
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indicates the position of the
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rate drops for wavenumbers k, of the order of a rep-
resentative wavenumber k,~ 1,2 in the direction of
propagation. Figure 3(b) shows the growth rate as a
function of the parameter K for a given value £2,=27/16

AER [ D
e |

05+ /' (a)

IE5y)

FIG. 2. (a) The square root of the relative change in the maxi-
mum of the electrostatic energy density as a function of time.
The slope of the solid line is the growth rate I'. The fast
growth for small times i8 indicated by the broken line. (b) The
electrostatic energy density at x=0, as a function of y, for
time £=0.5 (dots) and £=1.0 (crosses). The solid line is the
function 4 cosk,y.
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=3

of the perturbation wavenumber, The logarithm of the
growth rate is plotted versus the logarithm of K and the
straight line, which fits the data points for 1.5<K<3.5
indicates a dependence of the form I'c K2,

The evolution of the ion density for the solution shown
in Fig. 1 is given in Fig. 4. In Fig. 4(a), the ion den-
sity minimum N, (#) is represented in terms of the dec~
rement AN=N, o~ N,(f), where N, =~ | E(0)I2 denotes
the unperturbed ion density minimum. For £<0.3,
i.e., during the initial stage which corresponds to a
redistribution of the electrostatic energy in the density
depression, the depth of the density depression de-
creases, giving negative values of AN having an initial
quadratic time dependence, AN —¢%, This initial time
dependence is evident in the lower part of Fig. 4(a)
where the circles represent values of (- AN/I NI )'/2,
which exhibits an initial linear time dependence. After
the initial stage, the instability causes the density de-
pression to increase, giving positive values of AN hav-
ing a time dependence now of the form AN« ¢4, This
time dependence is evident in the upper part of Fig. 4(b)

(b)

/

| 2k x

L)
4 5
K

FIG. 3. (a) The growth rate I' as a function of ky,. The wave-
number corresponding to the half-width of the spectrum of the

soliton in the x direction is given by the arrow. (b) The loga-

rithm of the growth rate I versus the logarithm of the strength
parameter K. The solid line corresponds to [ <K 2,
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FIG. 4. Growth of the minimum of the ion density as a function
of time for run 8. (a) The square root of the relative change of
the minimum of N{x,y,t) for ¢<0.35 (open circles), and the
fourth root of the relative change for ¢ >0.35 (crosses). The
broken line indicates the initial decay with £2, the solid line

the later growth proportional to ¢%. (b) The minimum of the

ion density at x=0 as a function of y, for time ¢=0.0 (open
circles), ¢+=0.5 (dots) and £=1.0 (crosses).

where the crosses represent values of (AN/IN| /%,
which exhibits a linear time dependence for ¢ 20. 5.
The density minimum (at x=0), plotted versus y in Fig.
4(b) for £=0, 0.5 and 1.0, shows that the ion density
perturbation retains a dependence of the form cos(&y).

These computations were concerned with the insta-
bility of a standing soliton, i.e., v=0. The evolution
of a moving soliton, with v=0.6, Eq. (3), is given in
Fig. 5 at t=1.5. The initially planar soliton is ob-
served to have accelerated in the x direction for |yl >4,
where the electrostatic energy decreases, while in the
central region, |yl <4, where the electrostatic energy
increases, the soliton has decelerated. In Fig. 5 the
contour plot of the perturbed soliton may be compared
with the arrows located at x=vf=0.9, which corre~
spond to the location of the maximum of an unperturbed
soliton. The connection between the soliton group ve-
locity and its local electrostatic energy observed here,
was also seen for one-dimensional solitons in (I) where
the decrease in energy density was due to Landau damp-
ing. Here, the change in energy density is due to the
soliton instability.

Apart from the change in velocity, the collapse oc-
curs as in the case of a standing soliton, with a relative
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growth rate I' nearly independent of the velocity. *
However, since the initial energy density maximum

| E(0)12 is proportional to 1 — 2, the energy increment
A|E|%, for given values of K and k,, grows at a slower
rate as v increases. In this sense, solitons become
less unstable as their group velocity increases,®

We note that the results of Figs. 3(a) and 3(b) are in
apparent conflict with the theoretical results of Eqs.
(5)=(6) and (11)-(13). While we do not expect accurate
quantitative agreement between the analytical and com-
puter rates, we should expect the same parameter de-
pendence on k, and K, We observe a weak dependence
of T on &, for k, <k, in contrast to the linear depen-
dence of Egs. (5)-(6) and (12)~(13), and a proportionali-
ty to K? instead of K. Moreover, after a transient
stage, the growth of the ion density perturbation found
in Fig. 5(a) is proportional to ¢*, instead of having the
same dependence (proportional to ¢2) as the energy den-
sity.

These differences may be attributed to differences
between the initial conditions of the numerical solu-
tions, defined by Eq. (21), and the eigenfunctions as-
sumed in theoretical treatments of the instability.
Thus, because of the relatively short time over which
the soliton collapses in numerical solutions, the per-
turbation may never acquire the form of a pure mode
to which Egs. (5)-~(6) and (11)~(13) apply.

A calculation given in the Appendix and valid only for
short times gives the initial growth rate of a perturba-
tion described exactly by Eq. (21) to be

r2=gex*, (22)
This result agrees with the &, and K dependence of the
numerical computations for the range k,<«< K, but is a
factor of 3 too large. Moreover, (22) does not predict
the decrease in growth rate as k&, approaches K because

. L
t=1.5 I\
> /|
[ElS =144 /|
/|
y RH [ |
L | |
© W\
\ |
A
A\
N
{a) \
-8 1 l{
t
8 r 4 ;
N=13.1 / |
L/
! /
y { /
oF 1 \
| \
I \
|
\ I
(b) \l I‘
83 5 ¥ 3
X
FIG. 5. (a) The electrostatic energy density for a collapsing

soliton with group velocity v=0.6 at ¢=2.0. (b) The ion den-

sity perturbation in this case.
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in the derivation E was treated as predominantly a
scalar quantity, However the cutoff suggested by Eqgs.
(6) and (11) is in substantial agreement with the nu-
merical results, We also note that the behavior of the
density perturbation illustrated in Fig. 4(a) is in sub-
stantial agreement with the result given in the Appendix.

B. Final collapse stage

We now consider the final stage of the soliton col-
lapse in which the possibility of a self-similar solution
described by Eqgs. (15)~(17) has been proposed, !+8

The evolution of the electrostatic energy and of the
ion density for run 8 during the collapse stage, 1.25
<t<1,5 is shown in Fig, 6. At ¢=1,25 the level line of
|EI? at 0.5 of the maximum [solid line in Fig. 6(a)] has
assumed an approximately elliptical shape, with axes
of half-lengths D, and D, indicated by arrows, The lev-
el line at 0. 1 of the maximum (broken line) is also ap-
proximately elliptical. The same is true of the level
line at 0.5 of the maximum jon density depletion [solid
line in Fig. 6(b)] but not of the level line at 0. 1 (broken
line). At ¢=1, 375 the level lines of [E|2 and N are
still approximately elliptical, but the shape of the el-
lipses has changed. This is also true at £=1.5. At all
times in this collapse stage there is expulsion of ion
density accompanied by condensation of electric field
energy in the central region.

To examine the self-similarity of the solution, the
maximum of the electrostatic energy is plotted as a
function of time before collapse time at ¢’ =1.77 in Fig.
7(a). This collapse time was found by varying ¢’ to ob-
tain the best fit of the data points along a straight line
in the double logarithmic scale of Fig. 7(a). However,
the slope of this line gives a power law of the form
|El%cc |#' = ti~*2 instead of the linear dependence im-
plied by Eq. (17). Other solutions with different values
of the initial parameter K and perturbation wavenum-
ber &, show that these quantities do not influence the
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self-similar behavior strongly.

The half-lengths D, and D, of the level line at 0, 5 of
the maximum of | E|? are plotted in Fig. 7(b) using the
same collapse time ¢’ =1.77. These plots show that D,
and D, also follow, approximately, power laws of the
form D, oc (¢’ - ¢)%* and Dy (¢ - £)%8, These power
laws are consistent with conservation of total electro-
static energy W, but differ from the power law of Eq.
(17) which implies equal powers 0.5 for D, and D,.
Thus, the present numerical solutions suggest that the
assumption of self-similarity must be modified to allow
different scales in the x and y directions.

The behavior of the ion density during the collapse
stage, and the appearance of regions of excess ion den-
sity observed in Fig. 6, can be understood qualitatively
as follows. The electrostatic energy density |E|2 con-
tracts rapidly in the central region, increasing the pon-
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FIG. 7. (a) The maximum of the electrostatic energy density
as a function of the time interval to the collpase time ¢/ in the
standard case. The line with slope 1. 2 fits the data with the
choice £ ’=1.77. (b) The axes of the elliptical level line at 0.5,
D, and D,, as a function of the distance to the collapse time.
The line with slope 0.4 fits the data points for D,, and the
line with slope 0.8 fits the points for D,.
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deromotive force and expelling ions form this region. ratio m,/m;=0. 01 has been chosen to allow Landau
This causes the large ion depletion observed in the cen- damping to become significant at an earlier stage of the
tral region. However, the regions adjacent to the cen- collapse than it would with a realistic mass ratio, which
tral region, where electrostatic energy density has de- would necessitate a prohibitively expensive mesh size.
creased, can only partially make room for the expelled
ions, since the maximum velocity of propagation of an The evolution of the energy density |E|2 and of the
ion density perturbation is the ion sound speed equal to ion density perturbation N in run 17 is shown in Fig. 8.
unity. This sets an outer bound to the region that can A grid corresponding to 1426 modes was used in this
be reached by an ion density perturbation at any given computation. The initial stage of the instability (¢<2)
time. An estimate of the width of the region of excess is not strongly modified by Landau damping and is
ion density is given by the maximum velocity (unity) omitted from Fig. 8. At =2 a strong condensation of
multiplied by the time At during which the self-similar energy accompanied by ion density depletion has oc-
solution is applicable to the central region. In the pres-  curred in the central region. Regions of positive ion

ent case this time is A¢ = 1,0, giving an estimated width
of order unity. The width of the region of excess ion
density in Fig. 6, approximately 0.8, agrees with the
above estimate.

The self-similarly of the solution during the collapse
stage is of mathematical interest in establishing solu-
tions of Egs. (1) and (2), but its physical significance
is limited by Landau damping of the Langmuir waves
which strongly modifies the collapse stage.

C. Effect of Landau damping on the collapse stage

The effect of resonant particle interactions is in-
cluded in the present model by introducing damping
terms corresponding to Landau damping in the spectral
representation of Eq. (1). Comparisons of one-dimen-
sional solutions of the model equations with particle
simulations in (I), have shown that the introduction of
such terms gives a proper representation of resonant
particle interactions.

Landau damping is a function of kx,=2(m,/m)/?&/3,
where k in this expression is in physical units, while &
denotes the dimensionless wavenumber. For small &,
(B2p <0. 2) Landau damping is small, but fields with
large gradients, which are generated in the collapse
stage correspond to large values of k and are heavily
damped. In the computations presented here, a mass
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density perturbation also appear as in the solution with-
out damping shown in Fig. 6. At ¢=2.5, the maximum
of |E|? has decreased rather than increased, while the
width of the collapse region in the y direction also de-
creases, unlike the width in the x direction, which re-
mains constant. However, the ion density depletion

- N, continues to increase in this time interval and this
large depression in the background plasma keeps |E|2
concentrated.

When much of the electrostatic energy density, and
with it the ponderomotive force, has disappeared due to
Landau damping (¢=3), the ion density perturbation
propagates away from the collapse region, and moves
out in the original direction of propagation (x direction),
dragging what is left of |E|% with it. At /=4 (not
shown), |E!? is still contained by the density wells go-
ing out in the x direction. Also a smaller circular ion
wave, and some wall effects, are evident at that time.

The maximum of |E|? and the total electrostatic en-
ergy W in this solution are plotted in Figs. 9(a) and
9(b), as functions of time, Initially, |E|% increases
more slowly, but in a similar way as in collapse with-
out damping. At ¢=2 the damping begins to remove en-
ergy but the continuing collapse in the y direction main-
tains the increase in |E|2 until 1=2.2. The collapse
region reaches its minimum extension at £=2.5, and W
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FIG. 9. (a) The maximum of the electrostatic energy density
as a function of time for the soliton collapse with Landau damp-
ing of Fig. 8. (b) The total electrostatic energy W(t) nor-
malized to W(0) as a function of time. Note the rapid decrease
of W for 2<t<3.

decreases in the same manner as |E|? between t=2.5
and ¢=3. For longer times the wavelengths of the
Langmuir oscillations increase, and the damping rate
of W returns to its initial small value.

Our computations seem in qualitative agreement with
particle simulations of resonant absorption,!® which fol-~
low a mathematical model similar to Eqs. (1) and (2).
We have not addressed ourselves to the development of
the electron distribution function!® as a result of the
Landau damping, nor have we considered changes in the
da.mpingi‘ rate coming from a non-Maxwellian electron

distribution function. We have observed in (I) that at
least in one dimension these corrections do not change
the qualitative behavior of the solutions.

(1. GENERATION AND COLLAPSE OF TWO-
DIMENSIONAL SOLITONS DRIVEN BY AN EXTERNAL
PUMP FIELD

Numerical solutions of the generation of soliton-like
structures in one dimension from random initial fluc-
tuations by an homogeneous external pump field, have
been presented in (I). Soliton generation in two dimen-
sions may be studied numerically in a similar manner,
by writing the total electric field amplitude in Egs. (1)
and (2) as E(x, y, f) + Eyx, where E(x, y, {) now denotes
the internal field amplitude and E, is the constant am-
plitude of a pump field in the x direction, oscillating at
the plasma frequency w,. A numerical solution showing
two-dimensional soliton generation using this method is
illustrated in Fig. 10. This computation, performed on
a grid corresponding to 1426 modes, was initialized by
setting N=8N/8¢=0 and by giving to all electric field
modes equal amplitudes |E,| =0, 01 with random phases.
The normalized amplitude of the pump field, 7=eEy/
m,w,v,, where v,, is the electron thermal velocity,
was chosen as 7=0.3. A system with periodicity length
L,=L, =8 was chosen and Landau damping is included
with a mass ratio m,/m;=0. 01.

After a transient period in which the energy W de-
creases as the higher modes are damped W increases
exponentially with the linear growth rate, and at /1=5.5
a planar soliton-like structure of Figs. 10(a) and (b) is
generated, We note that the maximum value |E|2 is
larger than - N,,, unlike the ideal soliton with zero ve-
locity., After this generating phase, the soliton col-
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FIG. 10. The electrostatic energy density |E|%(x, y,t) and the ion density perturbation N{x, y, ) for the computation driven by an

external pump with n=0.3. The solid line is the level line of 0.5 of the maximum for the energy density | E| f,, and at 0.5 of the
minimum for the ion density perturbation N,. The broken line is the level line at 0.1 of the maximum or minimum. The asterisk

indicates the position of the maximum value.
spectively.
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Positive and negative regions in the plot for N(x, y, ) are indicated by +and —, re~
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lapses as shown in Figs, 10{c)-(f), qualitatively in the
same manner as the ideal soliton of Fig. 6. The values
of the maximum of |E|% and of — N increase rapidly,
the spatial extent of the collapse region decreases, and
ion waves are created. Note that the ion density mini-
mum, which in absolute value is less than |E|? at ¢
=6.5, reaches a larger value than |E{2 at ="7. This
reflects the damping of the electric field as well as the
dynamical behavior of N under influence of the pondero-
motive force. At f=8.5 most of the electrostatic en-
ergy in the collapse region has been absorbed by Lan-
dau damping and another soliton-like structure becomes
visible at the left in Fig. 10(g), while the ion density
perturbation, not accompanied by electrostatic energy,
starts to move away from the collapse region in the
form of ion waves.

These and other!? computations with different pump
field strengths, periodicity lengths, and mass ratios
show that it is not possible to generate stable “blobs”
of electrostatic energy in our model in two dimen-
sions, in contrast to soliton generation in one dimen-
sion, 1

In two dimensions, the collapsing electrostatic en-
ergy forms an ion density depletion, but the concentra-
tion of 1E|? becomes so large that Landau damping re-
moves most of the energy. Now, the final state con-
sists mostly of ion density waves, but with very little
electrostatic energy.

IV. CONCLUSIONS

The present study confirms and extends earlier com-
putations® showing the instability and collapse of Lang-
muir solitons in two dimensions. Additional computa-
tions* have verified that the essential features of this
instability and collapse are not modified by the inclu-
sion of the third dimension.

In contrast to the one~dimensional case, the interac-
tion between the electrostatic energy of Langmuir waves
and ion density fluctuations in multi-dimensional situa-
tions does not yield stable soliton structures, but gen-
erates transient structures which collapse, producing
large energy density gradients. The generation of such
structures with their subsequent collapse and absorp-
tion by Landau damping have been simulated in two di-
mensions. These computations show that, under the
action of an external pump field at the plasma fre-
quency, intense “blobs” of condensed electrostatic en-
ergy are continuously created at random, and disap-
pear by Landau absorption. These blobs while not co-
herent solitons do maintain the approximate amplitude-
width relationship of solitons during their lifetime.
Thus, the interaction of Langmuir waves with ion den-
sity fluctuations in multi-dimensional situations gen-
erates a turbulent state of the plasma, rather than the
approximately coherent soliton structures found in one-
dimensional simulations.!* This turbulent state is char-
acterized by short wavelengths, whose energy is readily
transferred to the particles by Landau absorption.

Note added in proof. As this paper was going to press
we were made aware of similar work by Y. S. Sigov and
Y. V. Khodirev,
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APPENDIX

We calculate the instability of the planar soliton (3)
as an initial value problem. The electric field is ex~
pressed in the form

E (x,v, ) = E(x) exp[iS(x, y, D+ iK?] , (A1)

where E(x) is the stationary soliton of Eq. (3a), with
v=0, and the y component of E is neglected. For the
initial ion density, we take Eq. (18) and set aN/a/=0 at
t=0.

Substitution of (A1) in Eq. (4), linearizing and ne-
glecting v derivatives yields, in the neighborhood of
x=0

aS/8t=1i(s2S/ax%) = N, . (A2)

To determine the imaginary part of S we integrate Eq.
(A2) twice, assuming that the ion perturbation, N, is
known. N, develops according to

a%N, 3N, 8®
=2 -5 =5 B 2mistr, v, 01}

at?  ax? (a3)

obtained by linearizing Eq. (2).

Equations (A2) and (A3) can be solved approximately
by a series development in time, restricting us to the
calculation of an initial growth rate. The first approxi-
mation for N follows from the solution of the wave
equation (A3), and the initial condition S=0:

Nl(x’y’t):%[Nl(x_t:y,0)+N1(x+ tyyyo)] . (A4)
Substituting (A4) in (A2) we find, as a first approxi-
mation §, to S, the real quantity

i

Sl(x)y) t)=j(; Nl(xLV)tl)dt, ’ (A5)
which does not change the right-hand side of Eq. (A3).
Thus, we can use the same ion density N, as previously
for the second approximation S,. Substituting S, in the
right-hand side of Eq. (A2), making use of the x deriva-
tive of (A5) and the special form of the argument of N,
which allows us to interchange time and space deriva-
tives, we find, for S near x=0,

Sz(x, v, t) = Sl(x’ ¥y, t) + (1/2) {ZNI(O’ ) 0)

-M(x=1t,9,0)+ Ny(x+2,3,0)]} . (46)
The electrostatic energy at x=0 is now
|E[=|E]*t=0)
x exp{~{2M;(0, v, 8) = [Ny (= £, 3, 0) + Ny (£, 5, O)]) .
(A7)

We recognize in the exponent the second differential
with respect to time, which is equivalent to the second
differential with respect to space, as the right-hand
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side of Eq. (A3) is approximately zero.

A power series development of N around x=0 yields

|E|%= |E|2(1=0)(1+8ek*t? cosk,y) , (A8)
from which we conclude that
rz = 861{4 . (Ag)

In Fig. 2 we have seen that the initial growth develops
in two stages. This calculation is strictly valid only
in the first stage, which is a re-arrangement of the
electrostatic energy in the perturbed potential well
formed by the ion density. In the second stage the y
derivatives are no longer negligible.

The time development of the ion density is described
for small times by Eq. (A4). A power series expansion
in time of (A4) shows a decrease of N; proportional to
t2, For later times, when the electrostatic energy |E|?
has grown appreciably, the ion density is expected to
evolve mainly under the influence of 1E[2, Then, the x
derivative of N in Eq. (2) can be neglected. Using Eq.
(A8) we find for N,

t t’ 32
Nylx, v, t)=f0 at’ fo dt’ (axz IEIZ)F‘,:{% K%*cosk,y ,

(A10)
indicating a behavior like #* at x=0, after the initial de-
cay stage proportional to t2, Equation (A10) is reliable
only in terms of the functional form, but not for its
numerical value, since the growth rate of the electro-
static energy, Eq. (A9), is only valid up to a constant.
The computations presented in Sec. II indeed confirm
the time dependence for the ion density N [see Fig.4(a)].
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