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The nonlinear Schrodinger equation, with complex coefficients that describe growth and damping, is
considered. An exact stationary soliton solution is found for arbitrary growth and damping strength.

The nonlinear Schrodinger equation, in normalized
form

2
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approximates the nonlinear evolution of large-amplitude
dispersive and weakly nonlinear systems. =3 Examples
of current interest in plasma physics are Langmuir
turbulence?! and nonlinear propagation of lower hybrid
waves in tokamaks.® In these examples, ¥ stands for
the complex envelope of the high-frequency electric
field E(x, £) =Rei(x, f) exp(— iwt), with w being the refer-
ence frequency. Then, the integral W= [|#|2dx repre-
sents the field energy, which is conserved by Eq. (1).

In this paper we want to study Eq. (1) with the addition
of simple terms that take growth and damping into ac-
count. The growth could be responsible for the pres-
ence of waves that are large enough to necessitate the
nonlinear term, whereas the damping might make an ul-
timate stationary state possible.

Accordingly, we modify Eq. (1) by adding a linear
growth rate y, =y, = v,#* for the Fourier mode of ¥ with
wavenumber k. (We choose the constants to be posi*
tive.) This model of growth rate typically® gives rise
to unstable solutions in the mode coupling equations,’
which are superficially similar to Eq. (1). By Fourier
transforming Eq. (1) and neglecting the nonlinear
term, it is clear that this modification adds a term
+i¥ol +1¥,9%0/8x 2 to the right side of Eq. (1).

In addition, we allow for the possibility of a nonlinear
(amplitude-dependent) damping, by including a term
—éy,l$1%p. This damping might be caused by collisions
in the absence of lower order effects,® or by trapped
particles.® With the various growth and damping terms
our model becomes Eq. (1) with complex coefficients
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The first integral W is not conserved by Eq. (2); in-
stead, we have

1d
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For the other integral invariants® of Eq. (1), similar
relations can be found. 10+

‘Pzdx-y,,fm*dx. (3)
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We treat two aspects of Eq. (2), viz., (i) the approach
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to equilibrium’ of an assumed solution, and (ii) an exact
solution in equilibrium. We start with the time-depen-
dent problem, A good!® approximation to a particular
solution for small vy, v,, and vy, is the solitary standing
wave

#(x, ) =v2 K(t) exp [ift K¥(t') dt’] sech[K (Hx], (4)
0

where the single parameter K(f) represents both ampli-
tude and width, and determines the nonlinear frequency
shift. Substitution of (4) in (3) leads to

s(dK/dt) =yoK = (v, + 4y ) K3/3 . (5)

It is clear that an equilibrium (dK/dt=0) between growth
and damping is reached when
K?=KZ2=3yo/(ys+4y,) . (6)

For small K<< K,, the growth of K with time is exponen-
tial, but K decreases as ¢™'/2 for K> K,. The full time
dependence of K is readily found as

K2(0) expldy,f)
1+ K¥0) (v, + 4v,) [exp(4y,t) = 1]/3y,

K(t) = (7

(cf. Ref. 7, Fig., 8, for a plot of a similar function).

We note that K(#) can grow explosively, K2~ (¢ =),
if y,+4y,<0, i.e., with dispersive or nonlinear growth
rather than damping. The explosion occurs when the
denominator in (7) vanishes at t=(4y,)"" In[1 - KZ/K%0)].
Ultimately higher order effects, such as terms like
|91% or o%/ax* which are neglected in our model, will
saturate such an instability.

We now present an exact solution of Eq. (2) in equilib-
rium. As can be verified by direct substitution,

Wx, £) =VZ L [sech(Kx)]1*i* ¢ 10 @

satisfies Eq. (2) exactly, for arbitrary yg, ¥,, and v,
by an appropriate choice of the equilibrium amplitude
L, 'width K~!, and nonlinear frequency shift 2. The
imaginary part of the complex exponent is found as

a=-—= B+(2+Bz)l/z )
B=3[(1=vpr)/(va+va)] -

To first order in the damping and growth constants y we
find

(9a)

ax$(y+yv)=1/8. (9b)
The inverse width is given by
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I
K 2a =y, + ay, (102)

g BISE), o
where KZ is the equilibrium value of Eq. (6).
The amplitude L is
L2=K2(1+%oryz—%az), (11)
while the nonlinear frequency shift turns out to be
Q==K 1+ 2ay,-0a?). (12)

How do growth and damping affect this equilibrium soliton
as compared to the stationary solution without growth
and damping? Equations (8)~(12) reduce to the well-
known soliton yg(x, #) =v2Z K sech(Kx) exp(iK?t) when the
growth constant y; as well as the damping constants y,
and y, vanish. The complex exponent o appears to first
order in y. Thus, i, is modified by the appearance of
an x-dependent phase of [sechKx]*=¢'®, i,e., ¢(x)
= a Insech(Kx).

The physical meaning of this phase follows from the
equation for the energy density |#|% obtained from Eq.

(2)
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The first term on the right-hand side of Eq. (13) is pos-
itive, and represents an energy source. The last
terms are negative, and describe energy sinks. In
equilibrium, there is no net energy production, i.e.,
af1y|2dx/ot=0. However, as the energy source
strength differs from the sink strengths, as functions
of x, energy must flow toward the region of stronger
absorption of energy. This flow is given by the term in
braces on the left-hand side of (13). For small damp-
ing, the expression in brackets, the flow velocity v,,
reduces to

v, =% (y, - 2y,) KtanhKx . (14)

For nonlinear damping only, »,>0, y,=0, the flow is
toward the origin, while for dispersive damping, v,>0,
v,=0, the flow is in the opposite direction.

To second order in y, the growth and damping change
the nonlinear frequency shift 2, and affect the usual
relation between amplitude L and width K™, Without
damping, L =K, but to second order in y we have from

(11)
LF=K 1+ (yy+ v (Tyy = 2,)/9] .

For nonlinear damping only the amplitude L is lower
than for the undamped soliton with the same width. The
damping goes like |#|*, is large where || is large,
and tends to decrease the amplitude. For dispersive
damping only, the soliton is more peaked than an un-
damped one, because now the damping occurs mainly

(15)
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in the soliton sides where | 89/8x|? is substantial.

Our previous estimate (6) for the equilibrium ampli-
tude K, is correct to first order, as is clear from Eq.
(10b), but can be larger or smaller than the actual val-
ue K to second order.

Finally, we note that our standing equilibrium soliton
(8)-(12) could easily be generalized to a moving one by
a Galilean transformation x’' = x — v, to an inhomoge-
neous medium by the transformation mentioned in Ref.
12, and that also an exact periodic solution can be found.

In conclusion, we have introduced the nonlinear
Schrédinger equation with complex coefficients by con-
sidering model growth and damping processes., We
have first, by approximate methods, treated the ap-
proach to equilibrium of a localized solution (soliton).
Subsequently, we have found an exact equilibrium soli-
ton. This soliton differs from the usual undamped soli-
ton in a phase proportional to growth and damping pa-
rameters y. To higher order in y the amplitude and
width are also affected, but the characteristic sech
shape is not changed.

After completion of this work we noted that Eq. (2),
with nonlinear growth only (y, =0, y,<0) and with dif-
ferent initial conditions, had already been solved ex-
actly.'® This solution is rather complicated, but can
be simplified by introducing a complex exponent as
done here (and in Ref. 14),
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