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A plasma wave with an oscillating amplitude and phase occurs in two commonly studied situations, the
beam-plasma interaction and the launching of a large-amplitude wave in 2 Maxwellian plasma. Electron
motion in such a wave is either regular or stochastic. Theoretical study shows that regular motion can
exhibit a phase-locking effect, which explains the persistence of amplitude oscillations observed in
simulations and experiments. An additional (“test””) wave of moderate amplitude can prevent phase-
locking, causing stochastic motion instead, and thereby destroy the amplitude oscillations. The effects

studied are also relevant to the theory of sideband instability.

I. INTRODUCTION

The evolution of a large-amplitude plasma wave has
interested a great number of theorists and experimen-
talists over many years. Two situations have been
treated most extensively. The first situation is that of
a wave launched in a Maxwellian plasma. Initially, the
wave damps, spatially in experiments or temporally in
simulations and in most theories. To be specific, here
we use the terms appropriate to the temporal (initial~
value) problem. If the linear Landau damping rate y is
much less than the bounce frequency w, of an electron
in the wave, only modest damping occurs, followed by
amplitude oscillations. ! Oscillations of the wave phase?
are also observed.® The second situation studied ex-
tensively is the interaction of an electron beam with a
plasma. The beam causes growth of a spectrum of
waves, the spectrum narrowing until a single wave (the
fastest growing) dominates the electron dynamics.
Trapping of beam electrons saturates the wave growth,
and the wave subsequently exhibits oscillations in its
amplitude and phase.

Several theories, directly applicable to the launched-
wave situation, have been proposed to treat the ampli-
tude and phase oscillations. The oscillations result
from exchanges of momentum and energy between the
wave and the resonant electrons? and can therefore be
calculated if the exact electron trajectories are known.
The earliest theories!s? used, instead of the exact tra-
jectories, those calculated for a wave without amplitude
and phase oscillations. A recent attempt to remedy this
lack of self-consistency is reported in Ref. 5. The best
available simulation results® do not agree with the “self-
consistent” theories in all respects, however.

The failures of these purely analytical theories are
caused by their inaccurate treatment of the trajectories
of some electrons, particularly, the barely trapped and
barely untrapped ones. (Statements to this effect have
appeared previously, for example in Ref. 7). To con-
struct truly self-consistent theories, the resonant-elec-
tron trajectories were computed exactly in “semi-simu-
lation” calculations, two for a large-amplitude wave in
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a Maxwellian plasma®® and two for the beam-plasma
system. 410

In this paper we examine the resonant-electron tra-
jectories in more detail than in work by previous au-
thors. We find that in a wave with oscillating amplitude
and phase, some electrons undergo “regular” motion,
which can be described analytically. This “regular” mo-
tion differs from motion in a wave with constant ampli-
tude and phase. In particular, the well-known phase-
mixing process is replaced by a phase-locking effect.
Other electrons undergo “stochastic” motion, for which
a useful analytical description is not known.

Our ideas have enabled us to understand some of the
results of a recent laboratory experiment by Dimonte
and Malmberg. !' The goal of this experiment was to
learn about physical processes in the beam-plasma in-
teraction that depend on the nonlinear dynamics of beam
electrons. Nonlinearities associated with the plasma
were eliminated by replacing it with a traveling-
wave tube. With this system, Dimonte and Malmberg
observed persistent amplitude oscillations (over five of
them) after saturation of the wave; previous beam-plas-
ma experiments had shown a rapid decay of the satu-
rated wave and only about two amplitude oscillations.
Persistent oscillations were also observedinthe semi-
simulation in Ref. 4 and in the full simulation® of the
evolution of a large-amplitude wave in a Maxwellian
plasma.

Another interesting observation of Dimonte and Malm-
berg, !! similar to observations in other experiments,
is that the amplitude oscillations can be destroyed by
the addition of a test wave with a frequency different
from the frequency of the original large-amplitude wave
(called the main wave). We do not treat a third obser-
vation of Ref. 11, that amplitude oscillations can be de-
stroyed by increasing the wave damping. To explain this
effect it seems necessary, as in Ref. 12, to consider
equations for the self-consistent evolution of the wave
amplitude and phase. These equations lie outside the
scope of our present work.
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Our numerical calculations, which are designed to
model beam-plasma experiments (including the Dimonte—
Malmberg experiment), yield the following results: A
region of phase space exists in which motion is regular.
Many beam electrons are located in that region, imply-
ing that there exist long-lived bunches of electrons
bouncing in the potential troughs of the wave. These
bunches, of course, cause the observed amplitude and
phase oscillations. A test wave displaces or destroys
the region of regular motion, forcing electrons to move
stochastically, This stochastic motion causes dispersal
of the bunches.

Our results should also aid in understanding the side-
band instability, first observed by Wharton et al. 2 The
extensive literature on this subject has discussed four
physical mechanisms leading to growth of sidebands,
waves at frequencies w differing somewhat from the fre-
quency w; of the main wave.

In the first mechanism, linear sidebands' are caused
by streaming perturbations introduced during the prep-
aration of the plasma. Experimenters can avoid the
linear sideband mechanism by using test waves with
amplitudes greatly exceeding the noise level.

The second physical mechanism is referred to by the
name “quasi-linear.” The many papers dealing with this
mechanism vary in their details, but the basic idea of the
quasi-linear mechanism seems to be the following. Dur-
ing the initial damping of a large-amplitude wave, the
Maxwellian distribution present at ¢ =0 is distorted in
the vicinity of the phase velocity of the main wave. For
intermediate values of y/w,, a positive slope appears on
the distribution function for 7 Sw,f <27, causing the wave
amplitude to regrow, but not toits initial level. The re-
sulting distribution function (averaged over subsequent
bounce periods) has a positive slope at the phase veloci-
ties of waves with frequencies w satisfying |w —wyl =w,.
Test waves with these frequencies show oscillations in
their growth rates, but have a significant net growth over
the length of the experiment. Theoretical workers have
tried to calculate the distribution function near the phase
velocity of the main-wave using inexact trajectories for
the resonant electrons, ¥~ Experimenters have elim-
inated the uncertainties of these calculations by measur-
ing the averaged distribution function using energy
analyzers. *~% The dispersion relation calculated in
Ref. 19 from the measured distribution function shows
impressive agreement with the measured dispersion
of test waves, lending strong support to the quasilinear
mechanism in these experiments.

The trapped-particle mechanism?! for sideband growth
requires a population of trapped electrons with a small
spread in the frequency of bouncing in the potential wells
of the main wave. Our results suggest that such a pop-
ulation indeed exists in the Dimonte—Malmberg experi-
ment; the electrons are not located at the bottom of the
potential wells, however. Experiments that have stud-
ied the sideband instability have used a launched wave
whose amplitude varied considerably. Under these con-
ditions the existence of the required population of
trapped electrons seems doubtful to us. Reference 22
claims to have confirmed the trapped-particle mecha-
nism by using a localized perturbing wave to detrap
electrons; but, such a wave also affects untrapped elec-
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trons, smoothing the distortions in the distribution func-
tion that cause sidebands to grow in the quasi-linear
mechanism. The appearance of both upper and lower
sidebands, initially taken as evidence for the trapped-
particle mechanism, 2! can be explained instead by the
fourth physical mechanism, passive four-wave cou-
pling. 3

In Sec. II we discuss a relatively simple dynamical
system with motion similar to that encountered in the
problem of beam-plasma interaction. Section III gives
the potential we use to model a wave with oscillating
amplitude and phase. Parameters appropriate to the
beam-plasma problem are chosen. Section IV dis-
cusses our particle-trajectory calculations, which show
a region of regular motion. We find that many beam
particles lie in or near this region. In Sec. V we in-
vestigate the effect of a test wave on the regular motion.
The Appendix uses properties of elliptic integrals and
functions to derive some formulae needed in Sec. IL

Il. REGULAR AND STOCHASTIC PARTICLE MOTION
IN TWO WAVES

In this section we discuss a simple dynamical system
exhibiting both regular and stochastic motion. Both
types of motion will be observed in Sec. IV for the more
complicated dynamical system suggested by the beam-
plasma problem. Here, we consider the one-dimension-
al motion of a particle in the presence of two waves.

The first wave has a much greater amplitude than the
second wave, which is treated as a perturbation. The
unperturbed problem is described by the Hamiltonian

Hy(x,p)=3p? —cosx , (1)

where x and p are the position and momentum of the par-
ticle, and where we have chosen to work in a reference
frame moving with the phase velocity of the first wave.
In (1) we use units such that the mass of the particle and
the wavenumber and amplitude of the first wave are uni-
ty. In Fig. 1(a) we show the potential energy V(x)

= —cosx. The Hamiltonian (1) describes many other
physical systems, a nonlinear pendulum being the best-
known example. Theoretical treatment of (1) is easiest
in action-angle variables. These variables are defined
in such a way that the unperturbed Hamiltonian depends
on the action J but not on the angle ¢: Hy=Hy(J). The
relations between the variables x and p used in (1) and
the variables J and ¢ are given in the Appendix. Phys-
ically, the action J represents the area (divided by 27)
bounded by a trajectory in the xp phase space. When J
reaches 8/7=2.55, the particle trajectory coincides
with the separatrix, which divides phase space into
trapped and untrapped regions. In Fig. 1(b) we show
the trajectory of a particle trapped in the trough of the
first wave. The angle ¢ represents the phase of the
bouncing motion in the trough.

The equations of motion derived from Hy(J) are ex-
tremely simple

dJ/di = - 8Hy/8¢p =0~ J()=J(t=0), (2a)

de/dt = 8Hy/8J = w,(J) = const . (2b)

The bounce frequency w,, defined in (2b), is unity for a
deeply trapped particle (J=0) and decreases as J in-

G. R. Smith and N. R. Pereira 2254

Downloaded 22 Nov 2009 to 132.250.22.8. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Vix)
o
i
{

dx/dt

FIG. 1. Plots illustrating the dynamical system described by
the Hamiltonian (1). (a) The potential energy well Vi(x)
=—cosx. (b) The phase plane of dx/dt vs x, showing the tra-
jectory (solid line) of a particle with H,=0.8. The dashed line
is the separatrix (H;=1).

creases. The formula for w,(J) is given in the Appen-
dix.
We next study the effect on the particle motion of a

second wave of amplitude ¢, wavenumber k, and frequen-
cy . The Hamiltonian becomes

H(x,p, t):HO(x’p)+H1(x’ t) y
H = -e€ecos(kx - Qt) .

(3a)
(3b)

In terms of the action-angle variables, the Hamiltonian
appears as follows:

H(gp,d,t)=Hy(J) + Hy(9, J, ), (4a)

Hi=-€3 VoJ,k)costng -91) . (4b)

n==w

In (4b) the perturbation is expressed as a Fourier series
- in the angle ¢. The Fourier coefficients

ACASEES f " dplcoskx(p, ) —no) 5)

can be written explicitly only in certain limiting cases.
For our purposes, an adequate approximation, exact
in the limit J-0, is

V., k) =J [R(20)1?] ,

where J, denotes the Bessel function of the first kind.
(See the Appendix for further information on the V,.)

(6)

The second wave introduces into the motion an infinite
number of resonances. These bounce resonances, as
we call them, are apparent after a trivial analysis of
(4). Since ¢ is treated as small, we neglect H, when
calculating d¢/dt and use (2b) as an approximation. The
phase of the nth term in (4b) is thus slowly varying in
time if
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nde/dl =nw,(J)=Q . (7)

The particle is near the nth bounce resonance if its J
satisfies (7).

For the bounce resonances, (7) gives the resonant
values of the action J and, therefore, the separation be-
tween the resonances in action space. A width can be
assigned to each bounce resonance; this width is analo-
gous to the trapping width one calculates for an electron
in the presence of a Langmuir wave. When resonance
widths exceed separations, one says that resonances
overlap. Overlap of resonances results in stochastic
motion, # which has two important properties. First,

a constant of the motion that exists when resonances

do not overlap disappears when resonances begin to
overlap. The loss of a constraint on the motion allows
the particle to visit regions of phase space not other-
wise accessible to it. Second, when motion is stochas-
tic, two particles initially close to each other in phase
space rapidly move apart. Therefore, a bunch of par-
ticles, such as occurs in the beam-plasma interaction,
will disperse when motion is stochastic.

Overlap of bounce resonances has frequently been
used® ¥ to show that motion near the separatrix is
stochastic. However, a numerical study of particle
motion in two waves® demonstrated that even with a
modest € (=0. 2), motion could be stochastic in a large
region of phase space, not just near the separatrix
where overlap of bounce resonances could be invoked.
In Sec. IV we show that the wave which occurs in the
nonlinear stage of beam-plasma interaction also causes
stochastic motion in a large region of phase space.

On the other hand, regular motion is found to occur
in an important region of phase space. For the param-
eters suggested by the problem of beam-plasma interac-
tion, we can easily describe the regular motion analyt-
ically. The value of the frequency parameter is

Q=w,(0), ) (8)

which implies that the »=1 bounce resonance (7) should
be important for deeply trapped particles (i. e., those
with small J). Indeed, a fair approximation for the
regular motion is obtained by neglecting all terms in
(4b) except that for n=1

H'™W¢, J,t)=Hy(J) — eV ,(J, k) cos(p - ) . (9)

We reduce (9) to a problem with one degree of freedom
by using a generating function®

Folp,J', t)= (¢ -}, (10)
which produces the canonical transformation
J =0F,/e¢p=J, (11a)
p=0F,/a]' =¢ - Q¢ , (11b)

KV (4, )= H"Y + 8Fy/8t = Hy(J) ~QJ — €V {J, k) cosy .
(11c)
In the transformed Hamiltonian (11c), we have dropped
the prime on J by virtue of (11a). The motion described
by (11c) includes fixed points, defined by

dy/dt =K'V /87=0 , (12a)
and

dJ/dt =~ 8KV /o= — eV siny=0 . (12b)
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The simultaneous satisfaction of Eqs. (12) requires

p=0or7, (13a)

and

Q —wy () £ €(8V,/8J) =0 . (13b)

The plus sign in (13b) goes with the ¢ =0 solution of
(13a), the minus sign with ¥=n. The ¢=r solution turns
out to be a stable fixed point, near which regular motion
occurs. To our knowledge, no existing theory can pre-
dict the size or shape of the region of regular motion.
We find this region by numerically calculating particle
trajectories.

The vzﬂue of J at which the stable fixed point occurs
can be estimated using (6), (13b), and the small-J ap-
proximation ’

wy(d) = wy(0) (1 = J/8) + O(J) (14)

derived in the Appendix. With our choice of units,
w,(0)=1 and the J value at the stable fixed point is

T=2(ke)*? . (15)

We emphasize that the most stable motion occurs not for
a particle at the bottom of the trough (J=0), but for one
with a certain amplitude of oscillation about the bottom.

The true particle motion derived from (4) differs from
the motion described by (9) or equivalently, (11c). In
particular, a true trajectory initially at the stable fixed
point shows oscillations in J away from (15). We have
been able to describe these oscillations by using the n
=2 and n= -1 terms of (4b).

In summary, in this section we have described the na-
ture of particle motion in two waves for moderate ampli-
tude €, wavenumber k~1, and frequency £ given by (8).
In the vicinity of the stable fixed point, the motion is
regular and can be treated with the approximate Hamil -
tonian (9). Away from the stable fixed point the motion
is stochastic, and only qualitative descriptions of the
motion are available.

I1l. MODEL FOR AN OSCILLATING WAVE

In this section we describe our model for a wave with
oscillating amplitude and phase (termed “an oscillating
wave”). This model should give an adequate description
for particle motion in the nonlinear stage of the Di-
monte-Malmberg experiment and in some beam-plasma
and launched-wave experiments.

We study particle motion in the potential
@(x,t)=@(t) cos|kx - 6(t)] . (16)

The amplitude oscillations are taken to be sinusoidal
with frequency €2,

&(t) = &4l1 + € cos(§1)] . (17)

We shall discuss our choices for € and . The phase
oscillations have components at two frequencies, 2 and
2Q,

8(t) = 6, sin(Qt) — 6, sin(282¢) . (18)

(The parameters 6, and 8, are chosen later.) Note that
we have removed the linear part (w¢) of the wave phase
by working in a reference frame moving with the time-
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averaged phase velocity. Phase oscillations at twice the
frequency of the amplitude oscillations were predicted by
Morales and O’Neil? using a theory that was not self-
consistent. The semi-simulations of O’Neil ¢/ al.?
clearly showed that the phase oscillations have compo-
nents at both © and 22. The analytical “rotating-bar”
model of Mynick and Kaufman, *® which is self-consis-
tent, provides physical insight into the origin of the com-
ponents at © and 22,

We feel that the self-consistent evolution of the wave
amplitude and phase has been adequately established by
semi-simulation and laboratory experiments. Our goal
is to clarify the particle motion in this given wave. Un-
derstanding the particle motion, in principle, allows one
to explain features of the self-consistent wave evolution
without resort to semi-simulation methods.

In choosing values for the parameters €, &, §;,, and
8;, we use information from Refs. 4 and 11. The univer-
sal solution of Ref. 4 gives a peak amplitude roughly
40% above the average amplitude, which is consistent
with the experiment of Dimonte and Malmberg. !! We
thus choose

€=0.4 (19)

in Eq. (17). Reference 4 also shows that the frequency
Q of the amplitude modulation is very nearly given by

Q=w,(0)=k(eby/m)'?, (20)

where e and m are the magnitudes of the electron charge
and mass. Physically, Eq. (20) follows from the fact
that the amplitude oscillations are caused by the bounc-
ing of electrons trapped near the bottom of the potential
wells.

We choose

6,=0.2, 6,=0.1 (21)

after analyzing the curve for €,(7), the real part of the

scaled and Doppler-shifted wave frequency, given in

Fig. 2 of Ref. 4. This curve is related to our d6/dt by
do _dr

di ~dt {erT: Tyt (Rew —kllo)t] _ﬁr} ’ (22)

where T is the scaled time variable, * 7y is the value of
T at the first maximum of the wave amplitude, £, is the
value 2, averaged over times beyond 7y, and u, is the

initial beam velocity.

The forms for ®(¢) and 6(t) resulting from these pa-
rameters are shown in Fig. 2.

Now, we show that the equations of particle motion in
the potential (16) are quite similar to those studied in
Sec. II. We neglect 8, in (18) and keep only terms up to
first order in 6,

cos[kx — 8(t)] = cos(kx) + 6, sin(2¢) sin(kx) . (23)
We multiply (23) by (17) and neglect the product €6,:
b {x, 1) = dy[cos(kx) + € cos(t) cos(kx) + 6, sin() sin(kx))

= ¢glcos(kx) + €, cos(kx — Q) + €, cos(kx + Q)] ,

(24)

where
€53(e+6)=0.3, €=3(c-6)=0.1. (25)
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FIG. 2. The amplitude & and phase 6 of an oscillating wave
given by (17) and (18) with parameters (19) and (21).

With a choice of units such that
m=k=edy=1, (26)

the Hamiltonian describing motion in (24) has exactly
the form (3a), with H, given by (1) and

H, = -¢,cos(x = Qt) — €,cos(x + Q) . 27)

In terms of the action-angle variables introduced in Sec.
II, (27) can be written

Hi= =3 U, costnp ) , (28)
where

U () =€,V,(J, 1)+ €, V,(J, - 1), (29a)

U ) =[e, + (1€, ]V, (7, 1) . (29b)

For (29b) we used
Vo, k)= (= 1YV, (J, &), (30)

which is easily proved using (5) and x(¢ —7)= —x(¢).
The similarity of (4b) and (28) indicates that our under -
standing of particle motion in two waves (Sec. II) can be
applied to motion in a wave with oscillating amplitude
and phase. The approximations we have made in deriv-
ing (24) [and thus (27) and (28)] do not invalidate this
conclusion, as shown by numerical results, which we
present later,

In laboratory experiments involving a large-amplitude
wave, the frequency is fixed and the wave amplitude and
phase oscillate in space. Instead of (16), particles feel
the potential

&(x', t) =& (x') cos[kx’ —wt - 6(x')], (31)

where x’ is measured in the laboratory frame of refer-
ence and w is the wave frequency. We introduce the co-
ordinate

vx=x —{w/k), (32)

which measures distance in the wave frame of reference,

and we assume & and 6 have forms analogous to (17) and
(18):

B(x")=dg[1+ ecos(kyx)], (33)
8(x") = 8, sinlk,x’) ~ 6, sin(2k,x") ; (34)
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where one period of the amplitude oscillation occurs in
a distance 27/k,. Again making the approximations
which led to (24), we find the potential in the wave frame
to be given by

@(x, )= dglcos(kx) + € cos(kx — kyx')
+ €,cos{kx + kyx')] . (35)

From (32) we write

kxthy' = (ktky)xt (kyw/k)t (36)
and define
bo=ktk,, S=kw/k. (37)

The potential {35) thus has the final form
@ (x, t) = ®glcos(kx) + €, cos(k_x — §2t)
+ €ycos(k,x + Q1)) . (38)

We see that the spatial (boundary-value) problem leads
to a potential (38) differing in a simple way from the
potential (24) occurring in the temporal (initial-value)
problem. The perturbation can still be written in the
form (28), but

U () = €V, b/B) + €V, (], =k, /R) . (39)

In the Dimonte -~Malmberg experiment, k,/k=0.2, and
detailed results derived using (39) would differ some~
what from the results for a corresponding temporal
problem, which would use (29).

IV. PARTICLE MOTION IN AN OSCILLATING WAVE

We now describe the particle trajectory calculations
we have carried out. The oscillating wave has the po-
tential given by Egs. (16)-(21), which is appropriate to
temporal (initial-value) problems. For the results pre-
sented here we have not made the approximations lead-
ing to (24); the results obtained with Eq. (24) are quite
similar, however, to those obtained with Eq. (16). We
have studied (16) rather than (31) because the former is
somewhat simpler. It is clear from the results of Sec.
IIT that qualitatively similar trajectories occur for tem-
poral and spatial problems.

The Hamiltonian

H(x, p,1)=p*/2m - ed(x, 1) (40)
gives the equations of motion

dx/dt=28H/dp=p/m , (41a)

dp/di=—8H/dx=e 0d/0x . (41b)

With the units specified by (26) and the specific model
of Eqs. (16)-(18), the equations of motion (41) take the
explicit form

dx/dt=p ,
dp/dt = -1+ e cos(Qt)]sinfx — 6(2)] .

(42a)
(42b)

Equations (42) were integrated numerically using an
accurate scheme, which is discussed in Ref. 31.

Previous workers have displayed particle trajectories
on the xp plane by using the curve traced by a particle
during its motion in the plane. Instead, we display the
calculated trajectories using a stroboscopic plot. This
type of plot is constructed by recording a point on the
xp plane whenever 2£/27 is an integer. Figure 3 shows
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FIG. 3. Comparison ofaplot of a complete trajectory (the
curve) with the points used for a stroboscopic plot. The trajec-
tory shown here is one of five used to produce Fig. 4.

how a stroboscopic plot differs from the type of plot used
previously. The curve was traced by a particle during
its motion; the points constitute a stroboscopic plot.
Stroboscopic plots allow us to distinguish at a glance be-
tween regular and stochastic motion. Stochastic mo-
tion is characterized by a particle trajectory that wan-
ders throughout a three-dimensional subspace of xpt
space, where x and £f are modulo 2r. On a stroboscop-
ic plot such a trajectory appears as a set of scattered
points. On the other hand, the existence of a constant
of the motion constrains a regular trajectory to a two-
dimensional subspace of xpt space. On a stroboscopic
plot a regular trajectory appears as a set of points that
seem to lie on one or more curves. The curves on our
stroboscopic plots are not trajectories but merely aids
for the eye in connecting points resulting from a single
trajectory.

The two classes of motion, regular and stochastic,
are shown in Fig. 4. To produce Fig. 4, we used five

dx/dt
=}

-2

-3 | | 1
-7/2 0 /2 L 3n/2

FIG. 4. Stroboscopic plot of five particle trajectories in the
potential given by Egs. (16)—(21).
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FIG. 5. Comparison of the locations in phase space of the

regular region and of the beam particles used in Ref. 4.

initial values of x and p, indicated by crosses. Four

of these initial conditions lead to regular trajectories,
while one leads to a stochastic trajectory. One of the
regular trajectories is very close to the stable-fixed-
point trajectory. Because of the simple form of (29b) we
can apply (15), after replacing ke by €, — €,==0. 2, to find
J =0, 68 as the predicted action value at the stable-fixed
point. The calculated trajectories suggest that the fixed
point is located at J~0.59, which is satisfactory agree-
ment. The dashed curve in Fig. 4 is the separatrix, de-
fined by Hy=1. In a wave without an oscillating ampli-
tude or phase (e = 6,=6;=0), a particle that is inside
the separatrix at =0 remains trapped forever. In an
oscillating wave, a particle can cross the separatrix

and move from one potential well to another.

The regular trajectories in Fig. 4 map out a region
in the xp plane that we call the “regular region.” The
existence of this region and its location near the stable
fixed point imply a phase-locking effect. This effect
replaces the phase-mixing process, which is usually in-
voked to explain decay of amplitude and phase oscilla-
tions. In a nonoscillating wave, particles trapped at
different depths in the potential well bounce with differ-
ent frequencies, i.e., w, =w,(J). The phases ¢ of dif-
ferent particles gradually lose any coherence they had
initially. In an oscillating wave, on the other hand, the
phases of particles in the regular region all increase at
a time-averaged rate &. Stating the same fact differ-
ently, we say that the variable ¥=¢ —$f never differs
much from 7, or that the particles return to the same
region of phase space whenever §2//27 is an integer.
The phases ¢, of N regularly moving particles (=1, 2,
..., N) satisfy

lo, -] <27 (43)

for all pairs of ¢ and j and for all time.

The regular region occupies only a small fraction of
the trapped part of phase space. The initial evolution
of the beam-plasma instability tends to bunch most of
the beam particles into a small region of phase space.
At the time of saturation (our {=0), are the beam par-
ticles located in the regular region we have found? Al-
though it may seem improbable, the answer is apparent-
ly yes. In Fig. 5 we compare the location in phase
space of the regular region and of the beam particles.
For the beam particles we use the results in Ref. 4,
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Fig. 3, for 7=6.0. This value of 7 is just before sa-
turation (7,~6.4) and corresponds to our £¢=-0. 5.
Plotting points of the outermost regular trajectory from
our Fig. 4 when Q/=~-0.5+27N (N=0, 1, 2, ...), yields
an approximate boundary of the regular region. This
boundary is shown by the dashed curve in Fig. 5. In
superposing the beam particles from Ref. 4 with our
regular region we have taken into account differences in
the variables used by them and by us. Their unit of
time is longer than ours by a factor of roughly 1.2 (ob-
serve the periods in Fig. 2 of Ref. 4), resulting in dif-
ferent units for velocity. Their spatial variable £ and
our x are measured in different reference frames (d¢/
dt = — 0. 68 corresponds to our dy/dt=0). Also, the
trough of the wave, which is moving in their reference
frame, must be located at T=6.0 (we find the trough to
be at £ = —0.15). Information for these determinations
has been derived from Fig. 2 of Ref. 4. The resulting
superposition in our Fig. 5 shows that many of the beam
particles lie in our regular region. Beam particles
outside, but close to, the regular region often remain
near the regular region for many periods 27/, accord-
ing to our trajectory calculations. In a finite-time ex-
periment the regular region is therefore somewhat
larger, effectively, than indicated in Fig. 5.

V. ADDITION OF A TEST WAVE

In the previous sections we have developed an under-
standing of the persistence of amplitude and phase oscil-
lations of a single wave. In experiments this single
wave (here called the main wave) dominates the elec-
tric-field spectrum for a certain (spatial) interval after
saturation. In the Dimonte—Malmberg experiment, this
interval could exceed the entire length of the experi-
ment. Alternatively, the experimenters could observe
development of a broad spectrum by launching a smaller-
amplitude wave (called the test wave) in addition to the
main wave. The launched test wave can be viewed as a
model for any wave, other than the main wave, that
grows because of the linear beam-plasma instability or
any of the sideband instability mechanisms mentioned in
Sec. L

In this section we study the effect of a test wave on
the regular motion observed in Sec. IV. We find that
a test wave can prevent the regular, phase-locked mo-
tion essential for persistent amplitude oscillations. As
a test wave grows in an experiment, its amplitude will
become large enough at some point to destroy the ampli-
tude oscillations of the main wave.

We compute particle trajectories using (40), but now
the potential of the main wave is augmented by that of
the test wave

& (x, 1) =@ (¢) cos[kx — 6(t)]

+ €,bgcosllkyx ~Qt + 1) . (44)

The parameters €,, #,, ©,, and 7 are held fixed in all
runs except for a few in which €, varies in time. Vari-
ous values for the test-wave amplitude €,, ranging up

to 0.3, are used. The values for the test-wave wave-
number %, and frequency 2, correspond to those used
for Fig. 3 of Ref. 11. From the frequencies of the main
and test waves given there and the measured dispersion
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relation!? we take

ky=(1.3)k=1.3. (45)

Remembering that we are working in the frame of the
main wave, we choose

Q=w; —kw/kx=3Q=-%, (46)

where w, is the test-wave frequency as measured in the
laboratory. The parameter 7 is the relative phase be-
tween the main and test waves at { =0 as felt by a par-
ticle at x=0, Because the test wave has a different
wavenumber than the main wave, a different value of 7
is appropriate for a particle located at kx =27 at £=0.
In a spatial (boundary-value) problem, different values
of n are appropriate for particles that were injected in-
to the plasma (or traveling-wave tube) at different times
and which therefore became trapped in different troughs
of the main wave. All of the results presented here
have

n=0. (47)

Runs with other values of 7 are similar qualitatively,
but can be quite different quantitatively.

In Fig. 6 we show stroboscopic plots of particle tra-
jectories in the potential given by Eqs. (44)-(47). For
Fig. 6(a) €; equals 0.1, which is roughly the value ob-

served by Dimonte and Malmberg at the first maximum
of the main-wave power (our /=0). For Fig. 6(b) €,
equals 0. 2, which is roughly the value they observed at
the first minimum (our ¢t =7/2). As the value of €, is
increased, we see that the regular region is displaced
to more negative values of dx/dt. However, the size

of the regular region seems to be changed only slightly
by a change in €,, although the regular regions in Fig.

6 are smaller than that in Fig. 4 (¢,=0). Detailed
study of regular trajectories like those plotted in Fig. 6
reveals that the particle undergoes large excursions in
H, (or equivalently, in J). The amplitudes of the excur-
sions increase as €, increases. Also, the location of the
regular region varies a great deal if 7 is changed, the
variation increasing with increasing €;.

These results suggest the following mechanism for
the destruction of amplitude oscillations in the Dimonte -
Malmberg experiment. At the point of wave-growth
saturation, the particles are distributed in phase space
roughly as calculated by O’Neil ef al.? As shown in Sec.
1V, they are thus located in or near the regular region
found for €, =0. The test wave grows rapidly, causing
a displacement of the regular region away from the part
of phase space where the particles are. The particles
thus move stochastically; no phase locking occurs and
the distribution of beam particles relaxes to a less co-
herent state. In this state the momentum and energy of
the particles are more nearly constant, giving smaller
oscillations in the wave power.

This scenario would be invalid if particle trajectories
were displaced in the same way that the regular region
is displaced. The rapid change of €, argues against such
a displacement of particle trajectories, and we have
conclusively ruled out this displacement with the follow-

ing test. We allowed €, to vary in time according to
0.1+ (Q#/m)0.1, 0<Qt<2n
€)= {o. 3, Qt>2m. (48)
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FIG. 6. Stroboscopic plots of particle trajectories in the

presence of a test wave of frequency ,=—2/3, showing dis-
placement of the regular region as the test-wave amplitude
€, is increased. Points are plotted whenever Qt/67 is an in-
teger.

We calculated several representative trajectories whose
initial valuesof x and dx/df would have led to regular
trajectories if €, were fixed at 0. 1; the trajectories are
stochastic when ¢, is given by (48).

Instead of being displaced, the regular region can
completely disappear in the presence of a test wave.
We illustrate this result in Fig. 7 for the potential spe-
cified by Eqs. (44), (45), (47), and

2,=1.5. (49)

For ¢,=0,05 Fig. 7 gives a much smaller regular re-
gion than for ¢,=0 (Fig. 4). For ¢,=0.1 in Fig. 7 the
regular region is even smaller, and for somewhat higher
values of €, no regular trajectories at all can be found.
We conclude that a strong enough test wave with fre-
quency (49) destroys the phase-locking mechanisms and
therefore the persistent amplitude oscillations.
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VI. CONCLUSIONS

We have studied the motion of particles in electric
fields that model the fields found in launched-wave or
beam-plasma experiments. The single large-amplitude
wave observed in these experiments can exhibit persis-
tent amplitude oscillations because of a phase-locking
effect. This effect replaces the well-known phase-mix-
ing mechanism for decay of the amplitude oscillations.
The phase-locking effect occurs in a certain part of
phase space called the regular region. In the beam-
plasma problem, this region is small, yet most beam
particles are located in or near the region. The addi-
tion of a test wave of moderate amplitude causes dis-
placement or outright disappearance of the regular re-
gion, which leads to dispersal of the bunched beam par-
ticles responsible for the amplitude oscillations.
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APPENDIX

Here, we give formulae arising in the transformation
of

Hy=3p - cosx ) (A1)

to action-angle variables. The results are well known,
but our approach might be instructive.

We introduce

y=3x (A2)
and

k*=3(1+ Hy) (A3)
and note that

p=dx/dt . (A4)
We can then write (Al) as

k%= (dy/dt)* + sin%y . (A5)

A deeply trapped particle has Hy=~1 and thus k=0; a
particle on the separatrix has Hy;=1 and x=1. The mo-
tion described by (A1) is given by functions sn, cn, and
dn, which are defined by

siny =k sn(f —#) , (A6a)
dy/dt =ken(t —ty) , (A6b)
cosy :dn(t -to) . (AGC)

We now show that these functions obey the relations that
determine the Jacobian elliptic functions with the same
names. ¥ Differentiating (A6a) and using (A6b, c), we
find

d{sn(t - t)]/dt = en(t —to) dn(t - ¢,) . (A7a)
Equations (A5) and (A6a, b) yield

enl(t —tg) +sn?(t —tg)=1. (ATb)
Combining (A6a) and (A6c) gives

dn®(t —ty) + k¥sn(t -t)=1. (A7c)

Together with sn0=0, Egs. (A7) are the determining
relations used by Whittaker and Watson.

We introduce the angle variable ¢, which satisfies
(2b):

¢ =g+ wy()t . (A8)
We choose ¢, such that
¢ =wu(J) (¢ ~1y) (A9)

and note the relation between ¢ and x that follows from
(A2), (A6a), and (A9):
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x(¢, J)=2sin Y x snlp/w,)] . (A10)

We want a 27 change in ¢ to correspond to one period,
and sn has periodicity 4K(x) where K(k) is the complete
elliptic integral of the first kind with modulus «. The
bounce frequency is thus given as a function of J=J(k)
by

w, (J)=71/2K(x) .

The relation between J and « follows from (All) and
from

(A11)

dH, dH, dk dx
by integration:
7= (8/7) [ k(i) dx (A13a)
J=(8/m)[E(x) - (1 - kHK(K)] , (A13b)

where E(k) is the complete elliptic integral of the second
kind. For (A13b) we use a formula found, for example,
in Gradshteyn and Ryzhik. 3 In the limit x -0 the mo-
tion becomes simple harmonic and

sn(f —ty) - sing , (Al4a)
cn(t —ty)~ cos¢ , (Al14b)
dnf —¢y)~ 1, (Al4c)
x ~ 2k sing , (A14d)
J~2P=1+H, . (Alde)

In (14) in Sec. II we use a result containing a correc-
tion term of higher order in k2. From (A11) and the
series® for K{x) in powers of «%, we find

w,,(J)z(1+"—2)'1.~.1_‘1 .

7 3 (A15)

Next, we find explicit forms for the Fourier coeffi-
cients V,(J, k) defined in Eq. (5). In the limit x~0 we
can use (Al4d, e) and the Bessel function identity

«©

cos(2kk sing ) = E J,(2kk) cos(ng)

fis=o

(A16)

to derive (6) for arbitrary .

For arbitrary « in the interval 0=k <1, we can cal-
culate V,(J, k) for half-integer values of k. Since
x(=¢,J)=~-x(¢,d), Eq. (5) can be rewritten as

V=5 | do expliliex(d, ) ~no]} . (A17)

From (A6a,c) we have

exp(ikx) = exp(i2ky) = [dn(p/w,) + ik sn(p/w,)]%* .
(A18)
For k=3, the V, are easily found by looking up the
Fourier decomposition of dn and sn.* The case of most
interest for this paper is 2==1, which we treat by con-
tour integration.

We change variables to u=¢/w, and use (A17), (A18),
and the periodicity of the integrand to write
1 ik

Ve =3k J,

duldnu + ik snu)? exp(—-inmu/2K) . (A19)

For the integration contour, shown in Fig. 8, we choose
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FIG. 8. The contour in the complex » plane used in evaluating
(A19). The pole is shown by the cross.

the rectangle with vertices 0, 4K, 4K+ 2K’, and 2iK’,
where K'=K[(1 - «%)'/?]. The periodicity properties of
dn and sn yield two results. First, the contributions to
the contour integral of the vertical sides of the rectangle
cancel. Second, the contribution of the segment marked
3 equals that of segment 1 times

—expl~inT 2K + 24K")/2K| = - (—¢)™, (A20)
where the nome
g=exp(-1K'/K) . (A21)

The same result holds for segments 4 and 2, allowing
us to write

V,={4K(l - (-g)™"\}'2mi 2R, (A22)

where R denotes the residue at a pole. Within the inte-
gration contour, the integrand in (A19) has only one
singularity (a double pole) at u =2K + iK' =u,. Defining
v=u —uy and using the expansions of dn and sn about «
=iK' given in Ref. 33, Sec. 22. 341, we find

(dnu + ix snu)? exp(— inmu/2K)

=~ (=g ™47t + 0(0")] exp(~inmv/2K) . (A23)
Thus,

R={(2inn/K)(-q"/%)™, (A24)
and from (A22)

V., 1):%{"{—()_%—2 (A25)
Equation (A10) is valid for all integers n#0. For n=0,

VolJ,1)=2E/K -1, (A26)
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