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Collisions between two equal Langmuir solitons with opposite velocities are studied numerically, as a
function of soliton strength, velocity, and relative phase angle. The computations show that all three
parameters are important in the outcome of a collision, for which qualitative estimates are given.

I. INTRODUCTION

Strong electrostatic turbulence has been described!*?
in terms of “Langmuir” solitons. These solitons are
nonlinear solitary wave solutions of the normalized one-

dimensional equations®*
(OE 9%E
15F+W—NE=0, (1)
2N 8N 8
37 5% =§;szlz- (2)

Here, we use the notation and normalizations of Ref. 4:
E is the (envelope of the) electrostatic field, and N is
the relative perturbation of the background ion density.

The stationary wave (single soliton) solution of Egs.
(1) and (2) is
E,=K[2(1 - v®)]¥2[coshK(x — p — v8)]!
X exp [1v(x - p)/2 - iQ2H], (3)
N,=-2K?/cost?K(x —p - vf), (4)
where Q=v%/4 - K2 K is a strength parameter, v is the
group velocity, and p is the initial position, Setting N
=-|E|% 1i,e., neglecting the time derivative of N in

Eq. (2), yields the well-known nonlinear Schridinger
equation

.OE B°E 2
2-5?+8—;2-+1E1 E=0, (5)

which has the soliton solution (3) with the factor 1 —v?2
set to unity. This equation is exactly solvable with the
inverse scattering method, ® in which solitons are basic
elements.® These solitons keep their identity in non-
linear collisions with one another: hence, the name
“goliton,”” The soliton theory of Langmuir turbulence
also uses the stability of solitons on collision, ! or as-
sumes an estimated merging rate.?

In this paper we study the collision between two equal
solitons numerically.?'® Section II gives a brief mathe-
matieal introduction. In Sec. III we present the com-
putational results, which show that solitons can pass
through one another, merge to form one large soliton,
or can exhibit some intermediate behavior, We find
that the relative phase difference between the electric
fields is also important. Estimates for the parameter
dependence of the various outcomes of a collision are
given in Sec. IV,

In a previous paper, * we showed that particle simula-
tions of Langmuir solitons compare favorably to the
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model equations (1) and (2), provided that an approxi-
mate Landau damping is included, but not without the
damping term. It is still of interest to investigate Eqs,
{1) and (2), however, both as an approximation to the
damped equations and for mathematical reasons.

I1. MATHEMATICAL PROPERTIES

For future reference in this section we present the
mathematical properties of Eqs. (1) and (2).

We see that Egs. (1) and (2) are invariant under space
reversal x— - x, and under time reversal with complex
conjugation, Thus, solutions have the same invariance,
provided the initial condition is also invariant, We do
not have invariance under a scale transformation®

x'=ax, t'=da"t,

(6)

E=a"E'(x',t'), N=a"N'(x' t").

We can choose 2m=n, n=2, which leaves Eqs. (1) and
(2), respectively invariant, but no unique choice for h
is possible, A convenient choice is k=1, which leaves
velocities invariant, With the soliton parameter K as
scaling factor, Eq. (1) becomes, suppressing the
primes,

1.8E &8
k—l—a“i +§z'x—_—NE=O. (7)

Instead of studying Eqs. {1)—(4) we can study a unit
soliton, Eqs. (3) and (4) with K=1, in Eqs. (2) and (7).
Only the phase of the unit soliton, v'x’'/2 - Q'¢, with ¢’
=v/K and §' =(v'?/4 - 1)K, corresponding to the time
derivative in (7), are functions of K,

When K> 1 the time derivative on E is large, as the
terms 8%E/82x and — NE are of order unity. However,
the time derivative of N in Eq. (2) is always about 1, so
that changes in the potential N(x, f) in Eq, (7) are slow
compared with changes in E. When K is of order one,
the time derivatives are of the same order, and inter-
ference between oscillations described by the two equa-
tions is possible.

The wave equation (2) leaves the total ion density per-
turbation [Ndx invariant, Consequently, the invariant
J8N/8tdx is zero. The Schrodinger equation (1) has a
mass invariant, the total electrostatic energy

W=f|E|2dx, (8)

and a momentum invariant, which is zero for our initial
condition, When combined with (2) an energy invariant
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TABLE I, Invariants for the single soliton of Eqs. (3) and
(4). The interaction energy Sy is calculated for ion density and
electrostatic energy shifted over a distance d (a = Kd).

(1) Mass invariant: W=[dx | E ?=4K{1-5?,
(2) Momentum invariant P=[dxi(EE} —E E,) =4Kv(1 —v?).
(3) (a) Total energy ion wave: Sy=/dx (N?/2+V?%/2)
=8/3K3(1+v?).
(b) Kinetic energy ion wave: Sg=/dxV?%/2=8/3K3%".
(4) Field kinetic energy Sg = [dx | 8E/0x | *
=K/3(L—v? (4K +30Y),
(5) Energy invariant S=4K3/3(5p2-1) +p¥(1-2 ) K,
=[(4K?2/3) (4K —5W/4) + W(1 = W)/(4K)1/4.
(6) Interaction energy S; = [dx N{(z) 1E1 2(z +a)

- 1_6K3(1-vz)(%%z%a - 1)/sinh2a

~-16/3K31 -2 (1—-2/54a2).

exists
S= I(Nl E|2+| 8E/0x|2 4 N/2 + V2/2)dx, (9)

with 8N/8t= - 8V/8x, The terms in S represent inter-
action energy, kinetic energy of E, and ion energy.
They are calculated for a single soliton in Table I.
More invariants do not seem to exist, in contrast to Eq.
(5), which has an infinite series of invariants.

The occurrence of a linear interaction, when Eqs. (1)
and (2) couple weakly, or a nonlinear interaction, when
the coupling between (1) and (2) is strong, could be de-
termined by comparing the interaction energy of a single
soliton to, for example, its ion energy. The estimates
for the separation between the different outcomes of a
collision based on these comparisons (Sec IV) are in
reasonable agreement with the observed separations,

1. NUMERICAL COMPUTATIONS

The numerical computations presented in this section
were performed with a code using a Fourier transform
method on a periodic system of length 16 K™, To start
the computations we must specify, in addition to E(¢=0)
and N(f=0), the time derivative M =8N/8f at £=0, be-
cause Eq. (2) is second order in time, For a soliton
(4) with velocity v, M,=v8N,/8x, The initial condition
for our two solitons is then

E,=E,(v, p; t=0)+E,(-v, - p; t=0)e®, (10a)
N, =N,(v, p; t=0)+N,(-v, = p; £=0), (10b)
M, =M,(v, p; =0} +M(~v, —p; £=0), (10c)

where the index 2 indicates the total field, ion density,
ete., of two solitons, With this initial condition N, and
M, are symmetric around x=0. The electric field E,
is only symmetric when ¢ =0, and is antisymmetric
when ¢ =7, The initial condition has three free param-
eters, the strength parameter K, the group velocity v,
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and the phase angle between the electric fields of the
two solitons ¢, The initial position p does not matter,
as long as the initial solitons are well separated,

Depending on the parameters, the solitons could: (i)
reflect from or pass through each other, (ii) lose their
identity and spread out through the system, or (iii)
merge to form one larger and narrower soliton with ad-
ditional ion sound waves, The different possibilities
are shown in Figs, 1-6 for one strength parameter K
=1.5., The initial group velocity v and the phase angle
¢ are given in each figure.

Possibility (i) is illustrated in Fig. 1. The initial
condition (10) Fig. 1(a), appears the same for all colli-
sions. The electrostatic energy | Ei? is independent of
¢, for well-separated solitons, and is proportional to
1-v2, Thus, the velocity only shows up in the scale of
IE|2,

At t=2,5, Fig. 1(b), one narrow, high structure has
been formed, seemingly very similar to a single sta-
tionary soliton, However, the maxima of |E|? and N
have a different ratio than in a stationary soliton with
v=0. Note that the maxima of the field and the ion den-
sity are larger than twice the initial value., The width
of |E[? is narrower than in a stationary soliton, which
follows from conservation of total energy W.

At 1=3,5 Fig, 2(c) the beginning of the separation is

seen. The field energy is still one structure, but the
3
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FIG. 1. The electrostatic energy density | E |2 (solid line),
and the ion density perturbation N (broken line) for a collision
between two equal solitons with opposite velocities. The scale
on the right is for | E | 2, on the left for N. The strength pa-
rameter K=1,5, the velocity » =0.8, and the phase differ-
ence ¢ =0,
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FIG. 2, The electrostatic energy density | E 1% (solid line),
and the ion density perturbation N (broken line) for a collision
between two equal solitons with opposite velocities. The scale
on the right is for |E| 2, on the left for N. The strength pa-
rameter K=1,5, the velocity v =0,6, and the phase difference
¢ =0, Note that the scale is different from the previous figure.

ion density is splitting in two in the middle. The soli-
tons emerging in the final state (d) are wider but small-
er in amplitude than the original ones, and some ion
sound has appeared.

The second possibility is shown for the same K but
smaller velocity, v=0.6, in Fig, 2. Situations similar
to those of Figs. 1(b), (c¢), and (d) are shown. The
solitons now move more slowly than in the previous
case, so that corresponding moments in the collision
occur later., Figure 2(b) at £=3 is very much like Fig.
1(b), apart from the values of the maxima, which vary
rapidly during the collision. At f=4.5, the field and ion
density are wider and smaller than in Fig. 1, and no
sign of splitting is seen. This broad structure persists
for subsequent times, shown in Fig. 2(d) at £=7. Sound
waves are also present here,

Merging solitons are shown in Fig. 3 for smaller ve-
locity, v=0,4, The structure at £=3.5 is very high and
narrow, The splitting of the ion density occurs at ¢
=5,5 in Fig. 3(c). Peaks appear in the ion density at
the sides of |E1%2, The peaks travel away from the re-
sulting stable soliton. This soliton is a little over twice
as high as the initial ones, and maximum and width ex-
ercise damped oscillations around average values,

The phase difference ¢ has a marked influence on the
interaction. Figure 4 shows the merging solitons of
Fig. 3, but with phase difference ¢ =7, i,e., antisym-
metric electric fields, The electric fields of the two
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solitons now repel each other as seen in (b) and (c),
while the ion densities overlap. After a long time dur-
ing which the situation is almost stationary the solitons
separate again, as seen in (d),

For a group velocity v=0.7, the ion densities still
show separation; however, when the group velocity is
increased to v=0, 9 the ion densities come together
completely, as observed in Fig. 5(a). An intermediate
case, ¢=7/2, with the same parameter K and v=0.4
is shown in Fig. 6. Now, one large and one small soli-
ton emerge and ion waves appear as always,

Whether solitons pass through one another or merge
on collision is summarized in Fig. 7, where the differ-
ent possibilities for phase angle ¢ =0 are plotted in
K-v parameter space. Parameters for which solitons
pass through each other, as in Fig., 1, are given by
open circles, collisions resulting in the wide structures
of Fig. 2 are given by crosses in circles, and merging
solitons as in Fig. 3 by crosses, Three regions are
visible, labeled 1, 2, and 3, and tentative boundaries
are indicated by broken lines, For large parameters
K (K >1,8) solitons with ©< 0,55 merge, while the others
pass through one another. For smaller K, three pos-
sibilities, depending on v, exist,

The two possibilities of regions 1 and 3 were found
earlier, and a boundary between the two was given® as
$=0 (solid line in Fig. 7), in reasonable but not perfect
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FIG. 3. The electrostatic energy density 1E | (solid line),
and the ion density perturbation N (broken line) for a collision
between two equal solitons with opposite velocities. The scale
on the right is for |E 12, on the left for N. The strength pa-
rameter K=1,5, the velocity » =0.4, and the phase difference
@ =0. Note that the scale is different from the previous fig-
ures.
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FIG. 4. The electrostatic energy density IE |? (solid line),
and the ion density perturbation N (broken line) for a collision
between two equal solitons with opposite velocities. The scale
on the right is for | E |2, on the left for N, The strength pa-
rameter K =1,5, the velocity v =0.4, and the phase difference
¢ =7, Note that the scale is different from the previous fig-
ures,

FIG. 5. The electrostatic energy density | £ 1% (solid line),
and the ion density perturbation N (broken line) for a collision
between two equal solitons with opposite velocities. The scale
on the right is for | E 1%, on the left for N. The strength pa-
rameter K=1,5, the velocity » =0.9, and the phase difference
¢ =7, Note that the scale is different from the previous fig-
ures.

753 Phys. Fluids, Vol. 20, No. 5, May 1977

38

Ef?

FIG. 6. The electrostatic energy density |E|? (solid line),
and the ion density perturbation N (broken line) for a collision
between two equal solitons with opposite velocities. The scale
on the right is for |E |, on the left for N. The strength pa-
rameter K=1.5, the velocity v=0.4, and the phase differ-
ence ¢ =7/2, Note that the scale is different from the previ-
ous figures.

agreement with the boundary observed here, However,
the wide structures of region 2, where K is of order
unity, were not found before. Also, the importance of
the relative phase difference was not recognized,

Even the simplest collision, between two equal soli-
tons with opposite velocities, yields fairly complicated
outcomes. Therefore, we have not done systematic
parameter studies of collisions between different soli-
tons, or solitons and sound waves. 2

1V. ESTIMATES FOR COLLISION POSSIBILITIES

We now offer some estimates for the parameters sepa-
rating the different outcomes of the collisions shown in

¢=0 0o O o
- 0 ®~Q 0 o
~\,
r /S ® N0 O
- /o ® ® &0 o
- AT T kTN
v (@) 2 ®/
— x X X
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L x : 3
o 1 - 1
03 033 1 2 4
K

FIG. 7. Outcome of a collision as function of the parameters
K and y, for ¢ =0. Parameters in region marked 1 yield
outcome as in Fig. 1, marked 2 as in Fig. 2, and 3 as in Fig.
3. Broken lines indicated approximate boundaries between
regions, The solid line is $=0,

N. R. Pereira 753

Downloaded 22 Nov 2009 to 132.250.22.8. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Figs. 1-6, We only use invariance properties and the
conservation laws., Note, however, that the phase dif-
ference ¢ between the electric fields of well-separated
solitons does not enter the conservation laws; thus, it
is impossible to predict all collision properties for
distinct ¢’s on the basis of the conservation laws alone.
We only consider the simplest cases, ¢ =0 and ¢ =mn.

When ¢ =7, Figs. 4 and 5, the initial condition (10)
for the electric field E is antisymmetric in x, but for
the ion density symmetrie. The evolution equation, (1),
is linear in E and symmetric in x, provided the ion den-
sity stays symmetric. Also Eq. (2) is symmetric in x,
and if 1E12 is also symmetric N(x, f) keeps its invariance
properties, Thus, the field E stays antisymmetric, and
zero at x=0, so that |E|? is symmetric and is zero at
x=0 and the fields do not overlap.

Although the energy densities stay separated, the ion
densities can overlap, depending on the initial velocity.
When ion density overlap occurs, the ion density be-
haves as in linear wave propagation, where amplitudes
add on collision. We obtain the separation velocity by
comparing the interaction energy S; (Table I, No. 6,
with a=0) to the ion kinetic energy Syx. Sk is equal to
S; for the separation velocity v2=2/3, or v,~0. 82,
which is in reasonable agreement with the observations.

The case of zero phase angle is more complicated.
We observed in Fig, 7that, depending on the parameter
K, two or three possibilities exist for the outcome of a
collision., We noted in the discussion of Eq, (7) that we
should expect a simple region for large K, and a more
complicated region for K around one, in agreement with
Fig. 7. Also, a simple region for K << 1 should be ex-
pected. This region is not of much interest, so that we
have few computations there, but the tendency to fewer
possibilities than around K =1 is indeed observed.

Solitons that pass through one another, for large K,
keep their shape approximately, We derive a boundary
between regions 1 and 3 by equating the ion wave energy
with half the interaction energy S;. This is the energy
difference between N and | E|2 at the same place, and a
half-width 1.33 K*! apart. We find v2=% or v,~0. 58,
which agrees well with the boundary between regions 1
and 3 in Fig. 7.

Emission of ion sound waves in a collision can prevent
the solitons from separating, in the following way. As-
sume that small amounts of ion wave energy [(N 2/
+V?2/2)dx >0 are emitted and that the solitons keep their
shape, changing their parameter K and velocity v (com-
pare Fig, 1), The change in K on emission of a small
amount of ion wave energy AS is AK = - 8S/8K |,AS,
where

S 8K?2% 40K?2p?

=t ——— +(1 -2y

8K, 3 3 (11)

is the derivative of the energy S at constant mass W
with respect to K. This derivative is positive definite,
so that emission of ion sound results in wider solitons,
The increase in width decreases the velocity according
to A(v®)=8(v?)/8K|,AK, where
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a(v®] 1-v?
8K |, K

(12)

which follows from conservation of the invariant W,

These estimates are valid for emission of infinitesi~
mal quantities of ion sound energy. However, as the
derivatives (11) and (12) are positive definite, the con-
clusion that solitons decrease their velocity and in-
crease their widths is also valid when finite amounts of
ion sound energy are emitted,

As seen in Figs. 3(c) and (d) the electric field energy
oscillates in amplitude and width, The oscillation can
be considered as a driving term in the wave equation
for the ion density, neglecting the effect of the ion den-
sity back on the oscillation for the moment. As always,
such an oscillating driving term emits waves for as
long as it oscillates., This process accounts for the de-
cay in the oscillation amplitude. ® Collided solitons will
continue to emit ion sound until they have reached a sta-
tionary state, which is, of course, a soliton with v=0,
and K= /2K determined from conservation of electro-
static energy W.

The maximum amount of ion wave energy AS, that can
be emitted from solitons colliding with velocity v is

AS, = 4v3(1 ~1®K(5K2%/3 +1).

The maximum sound energy emitted occurs for solitons
with v 2_ %
40

AS,< —K?3
St 27K'

slightly more than S for a soliton with v=0,

In conclusion, it is clear from this and the previous
section that collisions in Eqs. (1) and (2) show quite
complicated behavior, which is also different from the
collisions in Eq. (5).

After submission of this article very similar work?!®
came to my attention.

Nole added in proof. References 11 and 12 are also
relevant to the problem discussed here.
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